scholarly journals Selective Determination of Diazinon and Chlorpyrifos in the Presence of Their Degradation Products: Application to Environmental Samples

2018 ◽  
Vol 101 (4) ◽  
pp. 1191-1197 ◽  
Author(s):  
Mamdouh R Rezk ◽  
Abd El-Aziz B Abd El-Aleem ◽  
Shaban M Khalile ◽  
Omneya K El-Naggar

Abstract An accurate, sensitive, and selective HPLC method was developed and validated for the determination of diazinon and chlorpyrifos. These pesticides were subjected to different stress conditions, such as acidic, alkaline, oxidative, thermal, and photolytic hydrolysis. The proposed method used a C18 Eclipse Plus column (100 × 4.6 mm, 3.5 µm) and a mobile phase consisting of acetonitrile–water (70 + 30, v/v) in an isocratic separation mode. The flow rate was 1.5 mL/min, with UV detection at 247 and 230 nm for diazinon and chlorpyrifos, respectively. The proposed method was linear over the range of 0.40–50.00 µg/mL for diazinon and 0.40–40.00 µg/mL for chlorpyrifos. The proposed method was validated per International Conference on Harmonization guidelines and subsequently applied for the successful determination of the studied pesticides in bulk form in their commercial samples in the presence of their degradation products. The developed method was used for the determination of the residues of these pesticides in lavender and rosemary leaves that were pretreated with the recommended doses of these pesticides.

Author(s):  
N V Fares ◽  
Haitham A El Fiky ◽  
Amr M Badawey ◽  
Maha F Abd El Ghany

Abstract Background Validated UPLC method and TLC densitometric method were prescribed for determination of antihypertensive components. Objectives: To establish and validate rapid and accurate Ultra performance liquid chromatographic (UPLC) and TLC densitometric methods for determination of Xipamide and Triamterene in pure and dosage forms. Methods The first method; UPLC method, depended on using Agilent Zorbax Eclipse Plus C8 (50 mm × 2.1 mm, 1.8 μm), as the column, mobile phase composed of (acetonitrile-water) (70 + 30, v/v) adjusted by acetic acid to obtain (pH 3), 0.2 mL/min flow rate and UV detection at 231.4 nm. The second method was a thin layer chromatography (TLC) densitometric method, separation was achieved by using toluene-methanol-ethyl chloride-acetic acid (7 + 2 + 1 + 0.2, v/v/v) as the mobile phase, pre coated silica gel plates as the stationary phase and UV detection at 300.0 nm. Results The obtained results were validated and statistically compared with official and reported methods. The obtained results showed high accuracy and reproducible results with excellent mean recoveries for both drugs. Conclusions The UPLC method showed shorter retention time for both Xipamide (0.88 min) and Triamterene (0.63 min), lower detection limit less than 0.055 µg/mL for both drugs with high selectivity, decreased injection volume (1 µL) and lower flow rate other than any HPLC method. Both proposed methods were sensitive, selective, and effectively applied to pure and dosage forms (Epitens®). Highlights Unprecedented sensitive, rapid, and reproducible UPLC and TLC methods were developed for selective determination of mixture of Xipamide and Triamterene with LOD less than 0.076 µg/mL for both drugs.


Pharmacia ◽  
2020 ◽  
Vol 67 (1) ◽  
pp. 29-37
Author(s):  
Iryna Drapak ◽  
Borys Zimenkovsky ◽  
Liudas Ivanauskas ◽  
Ivan Bezruk ◽  
Lina Perekhoda ◽  
...  

Aim. The aim of study was to develop a simple and accurate procedure that could be applied for the determination of impurities and degradation products in cardiazol. Materials and methods. Separation in samples was carried out with Acquity H-class UPLC system (Waters, Milford, USA) equipped with Acquity UPLC BEH C18 column (2.1 × 50 mm, 1.7 μm) (Waters, Milford, USA). Xevo TQD triple quadrupole mass spectrometer detector (Waters Millford, USA) was used to obtain MS/MS data. Mobile phase A: 0.1% solution of trifluoroacetic acid R in water R; Mobile phase B: acetonitrile R. Samples were chromatographed in gradient mode (Table 1). Flow rate of the mobile phase: 1 ml / min. Column temperature: 30 °С. Detection: at 240 nm wavelength. Injection volume: 10 μl. Results. The retention time of the main substance is about 18.5 minutes. The order of the peak, the retention times and relative retention times: impurity B (12.04, 0.65); impurity А (18.5; 0.98); Cardiazol (18.87; 1.00). The LOD and LOQ values obtained were in the range of 30 ng/mL to 100 ng/mL and 80 ng/mL to 310 ng/mL respectively (with respect to sample concentration of 2 mg/ml). Linearity was established in the range of LOQ level to 0.2% having regression coefficients in the range of 0.9996 to 0.9999. The change in the temperature of the column affects the degree of separation of cardiazol and the impurity A, and thus, with a decrease of 5 ° C, the degree of separation is (1.06), while with increasing this index (3.43). When changing the flow rate of the mobile phase, the degree of separation changes in the following order, with a decrease to 0.9 ml / min separation (1.90), with an increase in speed to 1.1 ml / min (2.45). When the number of mobile phase B decreases by 5%, the degree of separation varies by (2.65), with an increase of 5% (1.82). In comparison with the chromatogram of the tested solution, the substance is not resistant to the action of peroxide, alkaline and acid decomposition. Conclusion. 1) HPLC method was developed and validated for the simultaneous detection and quantitation of impurities formed during the synthesis of cardiazol. 2) The method proved to be sensitive, selective, precise, linear, accurate and stability-indicating.


2010 ◽  
Vol 75 (7) ◽  
pp. 975-985 ◽  
Author(s):  
Dragan Milenovic ◽  
Zoran Todorovic

The aim of this work was to develop and validate a simple, efficient, sensitive and selective method for the analysis of dissolution samples of mexiletine hydrochloride capsules by HPLC without the necessity of any time-consuming extraction, dilution or evaporation steps prior to drug assay. Separation was performed isocratically on a 5 ?m LiChrospher 60, RP-Select B column (250 x 4 mm ID) using the mobile phase buffer-acetonitrile (60:42, v/v) at a flow rate of 1.2 mL min-1 and UV detection at 262 nm. The elution occurred in less than 10 minutes. The assay was linear in the concentration range 50-300 ?g mL-1 (r2 = 0.9998). The validation characteristics included accuracy, precision, linearity, specificity, limits of detection and quantification, stability, and robustness. Validation acceptance criteria were met in all cases (the percent recoveries ranged between 100.01 and 101.68 %, RSD < 0.44 %). The method could be used for the determination of mexiletine hydrochloride and for monitoring its concentration in in vitro dissolution studies.


2020 ◽  
Vol 66 (1) ◽  
pp. 85-90
Author(s):  
Zhaklina Poposka Svirkova ◽  
Zorica Arsova-Sarafinovska ◽  
Aleksandra Grozdanova

Due to the low absorptivity of bile acids, the aim of this study was to develop and validate a simple and sensitive HPLC/UV method for quantification of ursodeoxycholic acid (UDCA) in pharmaceutical formulations. Effective separation was achieved on C18 end–capped column, with gradient elution of a mobile phase composed of 0.001 M phosphate buffer (pH 2.8±0.5) – acetonitrile mix, at flow rate 1.5 mL min-1, UV detection at 200 nm and injection volumes were 50 µL. The proposed HPLC method was fully validated according to the ICH guidelines and it was found to be simple, accurate, precise and robust. Key words: ursodeoxycholic acid, HPLC/UV, pharmaceutical formulations, validation


2018 ◽  
Vol 17 (1) ◽  
pp. 43-50
Author(s):  
Sherejad Sanam ◽  
Sharmin Nahar ◽  
Nazmus Saqueeb ◽  
SM Abdur Rahman

A stability indicating HPLC method was developed and validated for the quantitative determination of fexofenadine hydrochloride. An isocratic separation was achieved using phenomenex (C18) column (250×4.6 mm, 5 μm) with flow rate of 1.0 ml/min and UV detection at 254 nm. The mobile phase consists of 5Mm acetate buffer: acetonitrile (50:50; v/v) with pH 9.4 adjusted with acetic acid. The drug was subjected to oxidative, acidic, basic, neutral, photolytic and thermal degradation. All degradation products were eluted in an overall analytical run time of approximately 40 min with the parent compound fexofenadine hydrochloride at a flow rate of approximately 3.3±0.3 min. The method was linear over the concentration range of 31.5-500 μg/ml (r2 = 0.999) with limit of detection and quantification of 3.5 μg/ml and 10.1 μg/ml, respectively. The method has the requisite accuracy, selective, precision and robustness to assay fexofenadine HCl in tablets.Dhaka Univ. J. Pharm. Sci. 17(1): 43-50, 2018 (June)


Separations ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 5
Author(s):  
Mohd Afzal ◽  
Mohd. Muddassir ◽  
Abdullah Alarifi ◽  
Mohammed Tahir Ansari

A highly specific, accurate, and simple RP-HPLC technique was developed for the real-time quantification of domperidone (DOMP) and lansoprazole (LANS) in commercial formulations. Chromatographic studies were performed using a Luna C8(2), 5 μm, 100Å, column (250 × 4.6 mm, Phenomenex) with a mobile phase composed of acetonitrile/2 mM ammonium acetate (51:49 v/v), pH 6.7. The flow rate was 1 mL·min−1 with UV detection at 289 nm. Linearity was observed within the range of 4–36 µg·mL−1 for domperidone and 2–18 µg·mL−1 for lansoprazole. Method optimization was achieved using Box-Behnken design software, in which three key variables were examined, namely, the flow rate (A), the composition of the mobile phase (B), and the pH (C). The retention time (Y1 and Y3) and the peak area (Y2 and Y4) were taken as the response parameters. We observed that slight alterations in the mobile phase and the flow rate influenced the outcome, whereas the pH exerted no effect. Method validation featured various ICH parameters including linearity, limit of detection (LOD), accuracy, precision, ruggedness, robustness, stability, and system suitability. This method is potentially useful for the analysis of commercial formulations and laboratory preparations.


2006 ◽  
Vol 3 (1) ◽  
pp. 60-64 ◽  
Author(s):  
P. Venkata Reddy ◽  
B. Sudha Rani ◽  
G. Srinu Babu ◽  
J. V. L. N. Seshagiri Rao

A reverse phase HPLC method is developed for the determination of Raloxifene in pharmaceutical dosage forms. Chromatography was carried out on an inertsil C18 column using a mixture of acetonitrile and phosphate buffer (30:70 v/v) as the mobile phase at a flow rate of 1 mL/min. Detection was carried out at 290 nm .The retention time of the drug was 10.609 min. The method produced linear responses in the concentration range of 0.5-200 µg/mL of Raloxifene. The method was found to be applicable for determination of the drug in tablets.


2021 ◽  
Vol 10 (1) ◽  
pp. 20-28
Author(s):  
Ivana Savić-Gajić ◽  
Ivan Savić ◽  
Predrag Sibinović ◽  
Valentina Marinković

In this study, the modified stability-indicating RP-HPLC method was validated for quantitative analysis of amlodipine besylate in the presence of its impurity D (3-ethyl 5-methyl 2-[(2-aminoethoxy)methyl]-4-(2-chlorophenyl)-6-methylpyridine-3,5-dicarboxylate). The method was applied for the determination of an analyte in the tablets and irradiated samples packed in the primary packaging (Alu/PVC/PVDC blister packaging). The efficient chromatographic separation was achieved using a ZORBAX Eclipse XDB-C18 column (4.6×250 mm, 5 mm) with isocratic elution of mobile phase which consisted of acetonitrile:methanol:triethylamine solution (15:35:50, v/v/v) (pH 3.0). The flow rate of the mobile phase was 1 mL min-1, while the detection of amlodipine besylate was carried out at 273 nm. Amlodipine besylate and its impurity D were identified at the retention times of 16.529 min and 2.575 min, respectively. The linearity of the method with the coefficient of determination of 0.999 was confirmed in the concentration range of 10 - 75 µg mL-1 for amlodipine besylate. The limit of detection was 0.2 µg mL-1, while the limit of quantification was 0.66 µg mL-1. After UV and Vis radiation of the tablets packed in the primary packaging, the content of amlodipine besylate was reduced by 22.38% and 19.89%, respectively. The presence of new degradation products was not detected under the given chromatographic conditions. The photodegradation of amlodipine besylate followed pseudo-first-order kinetics. Based on the half-life of amlodipine besylate (38.4 days for UV radiation and 43.3 days for Vis radiation), it was concluded that amlodipine besylate in the tablets has satisfactory photostability after its packing in the Alu/PVC/PVDC blister packaging.


2010 ◽  
Vol 93 (4) ◽  
pp. 1086-1092 ◽  
Author(s):  
Anna Gumieniczek ◽  
Anna Berecka ◽  
ukasz Komsta

Abstract For type 2 diabetes treatment, combinations of drugs from the thiazolidinedione and sulfonylurea groups are now available in the same tablet or capsule. Therefore, a stability-indicating and validated HPLC method was developed for simultaneous determination of pioglitazone, rosiglitazone, and glipizide in combined dosage forms. The examined drugs were subjected to different conditions such as acid and base, temperature, and UV light, and degradation of pioglitazone and glipizide was observed under thermal and acidic stress. However, selectivity of the presented method for pioglitazone, rosiglitazone, and glipizide assay against their degradation products was confirmed. It was also demonstrated to be robust, resisting small deliberate changes in pH of the buffer, flow rate, and percentage of acetonitrile in the mobile phase. The presented method utilizes a LiChrospher RP18 column (125 4.0 mm), acetonitrile in phosphate buffer at pH 4.3 (40 + 60, v/v) as the mobile phase, and UV detection at 225 nm for pioglitazone/glipizide or 245 nm for rosiglitazone/glipizide. The method was validated with respect to linearity, precision, and accuracy. Finally, the elaborated procedure was applied for the QC of pioglitazone/glipizide and rosiglitazone/glipizide mixtures.


2010 ◽  
Vol 93 (4) ◽  
pp. 1207-1214 ◽  
Author(s):  
Sejal K Patel ◽  
Natvarlal J Patel

Abstract This paper describes the development of a stability-indicating RP-HPLC method for the determination of atomoxetine hydrochloride (ATX) in the presence of its degradation products generated from forced decomposition studies. The drug substance was subjected to stress conditions of acid, base, oxidation, wet heat, dry heat, and photodegradation. In stability tests, the drug was susceptible to acid, base, oxidation, and dry and wet heat degradation. It was found to be stable under the photolytic conditions tested. The drug was successfully separated from the degradation products formed under stress conditions on a Phenomenex C18 column (250 4.6 mm id, 5 m particle size) by using acetonitrilemethanol0.032 M ammonium acetate (55 + 05 + 40, v/v/v) as the mobile phase at 1.0 mL/min and 40C. Photodiode array detection at 275 nm was used for quantitation after RP-HPLC over the concentration range of 0.55 g/mL with a mean recovery of 100.8 0.4 for ATX. Statistical analysis demonstrated that the method is repeatable, specific, and accurate for the estimation of ATX. Because the method effectively separates the drug from its degradation products, it can be used as a stability-indicating method.


Sign in / Sign up

Export Citation Format

Share Document