Animal-Free Paralytic Shellfish Toxin Testing—The Canadian Perspective to Improved Health Protection

2014 ◽  
Vol 97 (2) ◽  
pp. 334-338 ◽  
Author(s):  
Wade A Rourke ◽  
Cory J Murphy

Abstract The performance characteristics of AOAC Official Method 2011.02 (the PCOX method) asa replacement for the AOAC mouse bioassay procedure have been well defined by validation studies, but these data do not communicate the complete story. Thecontext provided by analyzing 9000 regulatory monitoring samples over 3 years demonstrates not only the reduction in animal use but also the increase in foodsafety that has been realized using a chemistry-based method. Detection of lower toxin levels provided early warning to enable directed sampling as toxin levels increased. The toxin profile information generated by a chemistry-based method was used to detect potential interferences qualitatively and can be usedto assess the impact of changes recommended to monitoring programs. Such changes might include which toxins should be included in an action limit or the toxic equivalence factors used for these toxins.

2014 ◽  
Vol 97 (2) ◽  
pp. 380-390 ◽  
Author(s):  
Andrew D Turner ◽  
Adam M Lewis ◽  
Wade A Rourke ◽  
Wendy A Higman ◽  
Z Amzil ◽  
...  

Abstract An interlaboratory ring trial was designed and conducted by the Centre for Environment, Fisheries, and Aquaculture Science to investigate a range of issues affecting the analysis of a candidate Pacific oyster paralytic shellfish toxin reference material. A total of 21 laboratories participated in the study and supplied results using one or more of three instrumental methods, specifically precolumn oxidation (Pre-COX) LC with fluorescence detection (FLD; AOAC Official Method 2005.06), postcolumn oxidation (PCOX) LC-FLD (AOAC Official Method 2011.02), and hydrophilic interaction LC/MS/MS. Each participant analyzed nine replicate samples of the oyster tissue in three separate batches of three samples over a period of time longer than 1 week. Results were reported in a standardized format, reporting both individual toxin concentrations andtotal sample toxicity. Data were assessed to determine the equivalency of the two AOAC LC methods and the LC/MS/MS method as well as an assessment of intrabatch and interbatch repeatability and interlaboratory reproducibility of each method. Differences among the results reported using the three methods were shown to be statistically significant, although visualcomparisons showed an overlap between results generated by the majority of tests, the exception being the Pre-COX quantitation of N-hydroxylated toxins in post ion-exchange fractions. Intralaboratory repeatability and interlaboratory reproducibility were acceptable for most of the results, withthe exception of results generated from fractions. The results provided good evidence for the acceptableperformance of the PCOX method for the quantitation of C toxins. Overall the study showed the usefulnessof interlaboratory analysis for the characterizationof paralytic shellfish poisoning matrix reference materials, highlighting some issues that may need to be addressed with further method assessment at individual participant laboratories.


2014 ◽  
Vol 19 (1) ◽  
pp. 27
Author(s):  
Haryoto Kusnoputranto ◽  
Setyo S Moersidik ◽  
Djarot S Wisnubroto ◽  
Murdahayu Makmur

Ledakan mikroalga sering dilaporkan terjadi di Teluk Jakarta, dimana di lokasi tersebut juga terdapat kegiatan budidaya kerang hijau (Perna viridis). Terkait dengan hal tersebut maka dilakukan studi akumulasi dan depurasi toksin PSP (Paralytic Shellfish Poisoning) pada kerang hijau. Studi akumulasi dilakukan di bagan kerang hijau perairan Cilincing Jakarta Utara, dengan memisahkan kerang hijau yang berukuran sama dan ditempatkan kembali ke bagan. Sampling dilakukan setiap minggu selama 2 bulan dan diukur juga kelimpahan fitoplankton, pH, suhu dan salinitas perairan. Depurasi dilakukan di Unit Depurasi Kekerangan KKP Panimbang Banten, yang dilakukan selama 24 jam. Pencuplikan  sampel dilakukan setiap jam pada 4 jam pertama dan setiap 2 dan 3 jam pada waktu berikutnya. Penentuan konsentrasi toksin PSP dilakukan dengan menggunakan HPLC detektor fluoresensi. Prosedur preparasi, ekstraksi dan pengukuran konsentrasi toksin mengikuti Manual AOAC Official Method 2005.06 untuk toksin PSP dalam kekerangan. Akumulasi toksin PSP oleh kerang hijau di perairan Cilincing pada bulan Januari–Pebruari 2011 berkisar antara 4,11–11,96 µg STX eq. per 100 g dan tidak mempunyai korelasi dengan kelimpahan Dinoflagelata di perairan. Hal ini disebabkan uji akumulasi tidak dilakukan pada saat blooming mikroalga. Uji depurasi selama 24 jam mengeliminasi toksin PSP sebesar 60%, sehingga bisa diajukan sebagai sistem pemutus rantai toksin dari mikroalga ke manusia. Kata kunci: akumulasi, depurasi, PSP toksin, kerang hijau, Cilincing Microalgae blooms have been frequently reported in the Jakarta Bay, which is also the location of green mussel (Perna viridis) aquaculture. Accumulation and depuration of Paralytic Shellfish Poisoning (PSP) toxin in the green mussels were investigated in the field, where the toxin accumulation studies conducted in the mussel farming at Cilincing, North Jakarta. Accumulation test carried out by placing back the selected green mussel (equal size) into the mussel farming. Every week for 2 months, the green mussel were collected from mussel farming and transported to the laboratory. The fitoplankton abundance also was checked including pH, Suhue and salinitiy paramaters. Toxin depuration was conducted at Clams Sanitation Unit at Panimbang Banten. The depuration studies were conducted for 24 hours with sampling every hour in the first 4 hours and every 3 and 2 hours until the 24th hour. Preparation, extraction and toxin concentration measurements performed by following the Manual AOAC Official Method 2005.06 for PSP toxin in oyster. This research concluded that the accumulation of PSP toxin by green mussel, Perna viridis in the mussel farming at Cilincing, North Jakarta in ranged between 4,11–11,96 µg STX eq. per 100 g during January–February 2011. No correlation between PSP toxin concentration in the green mussel, Perna viridis with abundance of the PSP toxin sources phytoplankton, because the study wasnt done when microalgae blooming. The depuration processes was eliminate 60% the PSP toxins for 24 hours depuration processing. It can be proposes as a banded system the PSP toxin from algae to human being. Keywords: accumulation, depuration, PSP toxin, green mussel, Cilincing


2012 ◽  
Vol 95 (4) ◽  
pp. 1089-1096 ◽  
Author(s):  
Robert G Hatfield ◽  
Andrew D Turner

Abstract The bioaccumulation of paralytic shellfish toxins in mussels, oysters, cockles, hard clams, razors, and king scallops is monitored in England, Scotland, and Wales by AOAC Official MethodSM 2005.06 LC-with fluorescence detection (FLD). One of the commonly perceived disadvantages of using this method is the long turnaround time and low throughput in a busy laboratory environment. The chromatographic analysis of each sample typically utilizes a 15 min cycle time to achieve toxin oxidation product separation and column equilibration prior to subsequent analysis. A standard RP C18 analytical column, used successfully in recent years, achieves good separation with a long column lifetime. The analysis of a 40 sample qualitative screening batch takes approximately 18 h, including blanks, standards, and other QC samples. The availability of superficially porous column technology has offered the potential to reduce analysis time while retaining column performance on existing hardware. In this study, AOAC Official Method 2005.06 with LC-FLD was transferred to two different commercially available superficially porous columns, and the method performance characteristics were evaluated. Both columns separated all toxins adequately with cycle times less than half that of the existing method. Linearity for each toxin was acceptable up to two times the European maximum permitted limit of 800 μg di-HCl saxitoxin equivalent/kg flesh. LOD and LOQ values were substantially improved for the majority of toxins, with gonyautoxin 1&4 and neosaxitoxin showing up to a two- and four-fold improvement, respectively, depending on the column used. Quantification results obtained from parallel analysis of contaminated samples were acceptable on both columns. Comparative screen results gave a slight increase in the occurrence of contaminated samples, which was attributed to the improved detection limit for most toxins. Issues with rapidly increasing back pressure, however, were identified with both columns, with a limit of around 500 injections. This compares to the >3000 cycles routinely obtained with the standard RP-C18 HPLC columns currently in use. Overall, the gain achieved with these columns through shorter analysis time and improved analytical sensitivity is potentially of benefit in a high-throughput environment. For the routine high-throughput screening of shellfish samples, however, an improved column lifetime is desirable.


2012 ◽  
Vol 95 (1) ◽  
pp. 129-142 ◽  
Author(s):  
Andrew D Turner ◽  
Robert G Hatfield

Abstract AOAC Official MethodSM 2005.06 LC-fluorescence detection (FLD) method is an official alternative to the mouse bioassay for the determination of paralytic shellfish poisoning (PSP) toxins in bivalve shellfish. To validate the method for species of relevance to the UK official control monitoring program, the method performance characteristics were tested for whole king and queen scallops. Validation showed that, while the performance was generally acceptable for the quantitation of non-N-hydroxylated toxins, poor toxin recovery and sensitivity was evident for the analysis of N-hydroxylated toxins following periodate oxidation. These effects occurred in a range of scallop samples with variable temporal and spatial sources. The effects were also noted in other laboratories following a small interlaboratory study. As a result, the method was refined to improve the recovery and sensitivity of analysis following the periodate oxidation step in the PSP method for scallops. Performance improved through alterations to the preparation of the periodate oxidant, use of higher volumes for C18 cleanup, and injection volumes in combination with the use of a king scallop matrix modifier for oxidation of N-hydroxylated toxin calibration standards. A single-laboratory validation of the refined method showed that the selectivity, linearity, sensitivity, recovery, and precision were acceptable and similar to values reported previously for AOAC Official Method 2005.06 in other bivalve species. Results showed the method to be rugged for all parameters investigated, including small changes to the composition of the new periodate reagent utilized in the refined method. The refined scallops LC method was subsequently compared with the European reference method. PSP-positive scallops showed an excellent agreement between the methods for queen and Atlantic scallops, with a small level of positive bias in the LC results for whole king scallops. These differences were related solely to the use of the highest toxicity equivalence factors for toxin epimeric pairs, with gonyautoxin (GTX)1,4 and GTX2,3 in particular present at high concentrations in the king scallops. Overall, the refined LC-FLD method improved the performance characteristics of AOAC Official Method 2005.06 for the determination of PSP toxins in whole king and queen scallops, and showed a good overall agreement between the official methodologies. It is, therefore, recommended as a more appropriate option for the routine monitoring of PSP toxins in these species.


Toxins ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 761
Author(s):  
Tamara Rodríguez-Cabo ◽  
Ángeles Moroño ◽  
Fabiola Arévalo ◽  
Jorge Correa ◽  
Juan Pablo Lamas ◽  
...  

In the late autumn of 2018 and 2019, some samples taken by the official monitoring systems of Cantabria and the Basque Country were found to be paralytic shellfish poisoning (PSP)-positive using a mouse bioassay. To confirm the presence of PSP toxins and to obtain their profile, these samples were analyzed using an optimized version of the Official Method AOAC 2005.06 and using LC–MS/MS (HILIC). The presence of some PSP toxins (PSTs) in that geographical area (~600 km of coast) was confirmed for the first time. The estimated toxicities ranged from 170 to 983 µg STXdiHCl eq.·kg−1 for the AOAC 2005.06 method and from 150 to 1094 µg STXdiHCl eq.·kg−1 for the LC–MS/MS method, with a good correlation between both methods (r2 = 0.94). Most samples contained STX, GTX2,3, and GTX1,4, and some also had NEO and dcGTX2. All of the PSP-positive samples also contained gymnodimine A, with the concentrations of the two groups of toxins being significantly correlated. The PSP toxin profiles suggest that a species of the genus Alexandrium was likely the causative agent. The presence of gymnodimine A suggests that A. ostenfeldii could be involved, but the contribution of a mixture of Alexandrium species cannot be ruled out.


1985 ◽  
Vol 48 (8) ◽  
pp. 659-662 ◽  
Author(s):  
T. A. GILL ◽  
J. W. THOMPSON ◽  
S. GOULD

Toxic soft-shell clams (Mya arenaria) were collected and the meats homogenized and tested for toxicity by the A.O.A.C. mouse bioassay procedure. The homogenate was incubated at temperatures ranging from 220 to 269.5°F and toxicities measured in samples heated for various time intervals. The relationships between toxicity and the time of heating were semilogarithmic for each of the six incubation temperatures. Decimal reduction times were calculated for each heat treatment and were plotted (log scale) against heating temperature. The thermal-destruction-time (TDT) curve was linear (r2 = 0.97), indicating that the kinetics of paralytic shellfish poison destruction are similar to those of most microorganisms. The toxin levels were also analyzed by high performance liquid chromatography for 110 samples and although results compared favorably with the bioassay data, its reliability for routine assessment of toxicity was not clearly established.


1970 ◽  
Vol 53 (1) ◽  
pp. 3-6
Author(s):  
R. Bruce Klemm ◽  
Mary E. Ambrose Klemm

Abstract The AOAC official method, 24.029–24.035, for the determination of fluorine in foods was modified slightly to o btain quantitative recoveries of fluorine from samples of fish protein concentrate (FPC). The most important alterations include the use of steam distillation, the addition of finely ground silica sand in the distillation, a decrease in the distillation temperature, and the utilization of direct titration. Recoveries of fluoride added to FPC before ashing, using this modified method, averaged 96.0 ± 3.0%. Our results are in agreement with those of several other analysts who used a variety of methods.


2012 ◽  
Vol 46 (3) ◽  
pp. 220-224 ◽  
Author(s):  
Sherry L Walters ◽  
Cristobal Jose Torres-Urbano ◽  
Lee Chichester ◽  
Robert E Rose

The ideal animal model would contribute no confounding variables in experimental science. Variables affect experimental design resulting in increased animal use or repeated studies. We demonstrated a simple refinement which may reduce the number of animals used experimentally while simultaneously improving animal welfare. The objective of this study was to determine if the presence of a hut was an impact on physiological stress levels, as determined by faecal cortisol concentration, during a routine four-day acclimatization period of newly received male Hartley-Outbred guineapigs. We hypothesized that those animals provided with huts would have decreased physiological stress compared with animals not provided with huts. We examined this effect within both paired and single-housed animals. A between-subjects one-way analysis of variance revealed that pair-housed animals with a hut had significantly lower faecal cortisol concentration than pair-housed animals without a hut and the presence and absence of a hut had no significant impact on faecal cortisol concentration in single-housed animals. These findings show that presence of a hut is beneficial in reducing physiological stress when pair housing male guineapigs and does not appear to have an impact when single housing male guineapigs. In addition, we have shown that faecal cortisol, and therefore physiological stress, is still increasing on study day 4 suggesting a longer acclimatization period is necessary. A simple refinement in housing environment and acclimatization time can both reduce the number of animals used experimentally and improve animal welfare.


Sign in / Sign up

Export Citation Format

Share Document