MEASURED LOADING RESPONSE OF MODEL MOTION CONTROL STERN TABS

2021 ◽  
Vol 155 (A1) ◽  
Author(s):  
J Bell ◽  
T Arnold ◽  
J Lavroff ◽  
M R Davis

Active trim tabs are commonly used as part of the ride control systems of high-speed craft. This paper investigates the lift characteristics of rectangular stern tabs that are commonly fitted to INCAT wave-piercer catamarans. A test apparatus was developed to enable the testing of a model scale trim tab in a circulating water tunnel in the University of Tasmania hydraulics laboratory. The magnitude and location of the lift force produced by the tab were measured over a range of tab angles and flow velocities. From this the lift coefficient of the tab was calculated and the performance of the tab under varying conditions was analysed. The lift force produced by the tab was shown to increase with velocity and tab angle as expected, with the lift coefficient of the tab increasing linearly with tab angle and remaining relatively constant with increases in flow velocity. The magnitude of the measured lift coefficient was lower than had been previously estimated in shallow water tests and the force was found to act forward of the tab hinge, indicating that much of the lift force generated by the tab is due to the increased pressure on the underside of the hull forward of the tab.

2013 ◽  
Vol 155 (A1) ◽  

Active trim tabs are commonly used as part of the ride control systems of high-speed craft. This paper investigates the lift characteristics of rectangular stern tabs that are commonly fitted to INCAT wave-piercer catamarans. A test apparatus was developed to enable the testing of a model scale trim tab in a circulating water tunnel in the University of Tasmania hydraulics laboratory. The magnitude and location of the lift force produced by the tab were measured over a range of tab angles and flow velocities. From this the lift coefficient of the tab was calculated and the performance of the tab under varying conditions was analysed. The lift force produced by the tab was shown to increase with velocity and tab angle as expected, with the lift coefficient of the tab increasing linearly with tab angle and remaining relatively constant with increases in flow velocity. The magnitude of the measured lift coefficient was lower than had been previously estimated in shallow water tests and the force was found to act forward of the tab hinge, indicating that much of the lift force generated by the tab is due to the increased pressure on the underside of the hull forward of the tab.


2021 ◽  
Vol 158 (A2) ◽  
Author(s):  
J Bell ◽  
J Lavroff ◽  
M R Davis

The ride control systems of high-speed vessels frequently use active stern tabs for both motion control and maintenance of correct trim at various speeds and sea conditions. This paper investigates the effect of water depth on the lift force provided by stern mounted trim tabs, of the type fitted to INCAT high speed wave-piercer catamaran vehicle ferries and similar vessels. This investigation was carried out at model scale with the use of a test apparatus in a flume tank in the University of Tasmania hydraulics laboratory. The lift force magnitude and location were measured over a range of tab angles and flow depths. This was used to calculate the lift coefficient of the tab and asses the performance of the tab over the range of flow depths. It was found that the lift force increased and the force location progressed further forward of the hinge as flow depth decreased. The lift curve slope of the stern tab increased by a factor of over 3 relative to the deep water value when the water depth below the hull was approximately equal to the tab chord. The deep water lift curve slope appears to be approached only when the water depth exceeded 4 or more tab chord lengths. The centre of pressure of the lift force was more than two chord lengths ahead of the tab hinge, showing that most of the lift produced by the tab was under the hull rather than on the surface of the tab itself.


2021 ◽  
Vol 157 (A1) ◽  
Author(s):  
T Arnold ◽  
J Lavroff ◽  
M R Davis

Trim tabs form an important part of motion control systems on high-speed watercraft. By altering the pitch angle, significant improvements in propulsion efficiency can be achieved by reducing overall resistance. For a ship in heavy seas, trim tabs can also be used to reduce structural loads by changing the vessel orientation in response to encountered waves. In this study, trials have been conducted in the University of Tasmania hydraulics laboratory using a closed- circuit water tunnel to measure model scale trim tab forces. The model scale system replicates the stern tabs on the full- scale INCAT Tasmania 112 m high-speed wave-piercer catamaran. The model was designed for total lift force measurement and pressure tappings allowed for pressures to be measured at fixed locations on the underside of the hull and tab. This investigation examines the pressures at various flow velocities and tab deflection angles for the case of horizontal vessel trim. A simplified two-dimensional CFD model of the hull and tab has also been analysed using ANSYS CFX software. The results of model tests and CFD indicate that the maximum pressure occurs in the vicinity of the tab hinge and that the pressure distribution is long-tailed in the direction forward of the hinge. This accounts for the location of the resultant lift force, which is found to act forward of the tab hinge.


2015 ◽  
Vol 157 (A1) ◽  
pp. 31-40 ◽  

"Trim tabs form an important part of motion control systems on high-speed watercraft. By altering the pitch angle, significant improvements in propulsion efficiency can be achieved by reducing overall resistance. For a ship in heavy seas, trim tabs can also be used to reduce structural loads by changing the vessel orientation in response to encountered waves. In this study, trials have been conducted in the University of Tasmania hydraulics laboratory using a closedcircuit water tunnel to measure model scale trim tab forces. The model scale system replicates the stern tabs on the fullscale INCAT Tasmania 112 m high-speed wave-piercer catamaran. The model was designed for total lift force measurement and pressure tappings allowed for pressures to be measured at fixed locations on the underside of the hull and tab. This investigation examines the pressures at various flow velocities and tab deflection angles for the case of horizontal vessel trim. A simplified two-dimensional CFD model of the hull and tab has also been analysed using ANSYS CFX software. The results of model tests and CFD indicate that the maximum pressure occurs in the vicinity of the tab hinge and that the pressure distribution is long-tailed in the direction forward of the hinge. This accounts for the location of the resultant lift force, which is found to act forward of the tab hinge."


2021 ◽  
Vol 163 (A1) ◽  
pp. 29-40
Author(s):  
M R Davis

Wave slam produces dynamic loads on the centre bow of wave piercing catamarans that are related to the relative vertical motion of the bow to the encountered wave surface. Rapid slam forces arise when the arch sections between centre bow and main hulls fill with rising water. In this paper time domain solutions for high speed ship motion in waves, including the action of active motion controls, are used to compute the slam forces. Slamming occurs at specific immersions of the bow whilst the peak slam force is characterised by the maximum relative vertical velocity of the bow during bow entry. Vertical motions of bow and encountered wave are in antiphase at encounter frequencies where slamming is most severe. The range of encounter frequencies where slamming occurs increases with wave height. Wave slam loads reduce ship motions, the heave motion being most reduced. Deployment of a fixed, inactive T-foil can reduce slamming loads by up to 65 %. With active controls peak slamming loads on the bow can be reduced by up to 73% and 79% in 4 m and 3 m seas, local control feedback being marginally the most effective mode of control for reduction of slamming.


2015 ◽  
Author(s):  
Alan J. Haywood ◽  
Benton H. Schaub ◽  
Chris M. Pappas

The use of ride control systems on high speed vessels has become the norm within many industries, producing better seakeeping that in turn provides a more comfortable and operationally effective vessel. Commercial ferry designers have been at the forefront of adoption of new technologies notably with early adoption of T-foils and interceptors. These devices have been taken up by others, for example offshore crew boats and frontline naval warships. The range of vessel types has also expanded with more industries adopting different hull designs including catamarans and trimarans. Ride control systems have developed alongside innovative designers producing for example combined lifting foil and ride control systems, lifting T-foil systems, retractable T-foils. This paper will review the different ride control devices including fins, trim tabs, interceptors, T-foils (including retractable T-foils) and lifting foils. As well as technical aspects, the discussion will consider costs, ease of installation, operational and maintenance requirements and material choice. Extensive examples from a wide range of industries will be presented. By the end of the talk, delegates will have a broad understanding of the options available to them in improving the seakeeping of their vessels.


Author(s):  
J AlaviMehr ◽  
M R Davis ◽  
J Lavroff ◽  
D S Holloway ◽  
G A Thomas

Ride control systems on high-seed vessels are an important design features for improving passenger comfort and reducing motion sickness and dynamic structural loads. To investigate the performance of ride control systems a 2.5m catamaran model based on the 112m INCAT catamaran was tested with an active centre bow mounted T-Foil and two active stern mounted trim tabs. The model was set-up for towing tank tests in calm water to measure the motions response to ride control step inputs. Heave and pitch response were measured when the model was excited by deflections of the T-Foil and the stern tab separately. Appropriate combinations of the control surface deflections were then determined to produce pure heave and pure pitch response. This forms the basis for setting the gains of the ride control system to implement different control algorithms in terms of the heave and pitch motions in encountered waves. A two degree of freedom rigid body analysis was undertaken to theoretically evaluate the experimental results and showed close agreement with the tank test responses. This work gives an insight into the motions control response and forms the basis for future investigations of optimal control algorithms.


2019 ◽  
Vol 178 ◽  
pp. 410-422 ◽  
Author(s):  
Javad AlaviMehr ◽  
Jason Lavroff ◽  
Michael R. Davis ◽  
Damien S. Holloway ◽  
Giles A. Thomas

2011 ◽  
Vol 141 ◽  
pp. 350-354
Author(s):  
Shi Xun Fan ◽  
Da Peng Fan ◽  
Ryozo Nagamune

The positioning performance of high-speed, high-accuracy light-weight motion control systems is usually restricted by the structure flexibility and model parameter-varying caused by load mass variation. It needs to develop novel motion control algorithm to eliminate the residual vibration in the end-effectors, as well as to be robust over the load mass variation. This paper addresses the first and crucial step of this problem, modeling and identification technique. The linear parameter-varying model of the system is constructed and analyzed. The parameters and affine function identification method based on nonlinear least-squares and principle component analysis technique is proposed. The validity of the proposed method is demonstrated through a lightweight machine experimental setup. It is general enough to be applicable to the dynamic behaviors analysis and gain-scheduling robust control design for industrial lightweight vibration suppression and motion control systems that possess flexible elements and variable loads.


Sign in / Sign up

Export Citation Format

Share Document