PRESSURE DISTRIBUTION DUE TO STERN TAB DEFLECTION AT MODEL SCALE

2021 ◽  
Vol 157 (A1) ◽  
Author(s):  
T Arnold ◽  
J Lavroff ◽  
M R Davis

Trim tabs form an important part of motion control systems on high-speed watercraft. By altering the pitch angle, significant improvements in propulsion efficiency can be achieved by reducing overall resistance. For a ship in heavy seas, trim tabs can also be used to reduce structural loads by changing the vessel orientation in response to encountered waves. In this study, trials have been conducted in the University of Tasmania hydraulics laboratory using a closed- circuit water tunnel to measure model scale trim tab forces. The model scale system replicates the stern tabs on the full- scale INCAT Tasmania 112 m high-speed wave-piercer catamaran. The model was designed for total lift force measurement and pressure tappings allowed for pressures to be measured at fixed locations on the underside of the hull and tab. This investigation examines the pressures at various flow velocities and tab deflection angles for the case of horizontal vessel trim. A simplified two-dimensional CFD model of the hull and tab has also been analysed using ANSYS CFX software. The results of model tests and CFD indicate that the maximum pressure occurs in the vicinity of the tab hinge and that the pressure distribution is long-tailed in the direction forward of the hinge. This accounts for the location of the resultant lift force, which is found to act forward of the tab hinge.

2015 ◽  
Vol 157 (A1) ◽  
pp. 31-40 ◽  

"Trim tabs form an important part of motion control systems on high-speed watercraft. By altering the pitch angle, significant improvements in propulsion efficiency can be achieved by reducing overall resistance. For a ship in heavy seas, trim tabs can also be used to reduce structural loads by changing the vessel orientation in response to encountered waves. In this study, trials have been conducted in the University of Tasmania hydraulics laboratory using a closedcircuit water tunnel to measure model scale trim tab forces. The model scale system replicates the stern tabs on the fullscale INCAT Tasmania 112 m high-speed wave-piercer catamaran. The model was designed for total lift force measurement and pressure tappings allowed for pressures to be measured at fixed locations on the underside of the hull and tab. This investigation examines the pressures at various flow velocities and tab deflection angles for the case of horizontal vessel trim. A simplified two-dimensional CFD model of the hull and tab has also been analysed using ANSYS CFX software. The results of model tests and CFD indicate that the maximum pressure occurs in the vicinity of the tab hinge and that the pressure distribution is long-tailed in the direction forward of the hinge. This accounts for the location of the resultant lift force, which is found to act forward of the tab hinge."


2013 ◽  
Vol 155 (A1) ◽  

Active trim tabs are commonly used as part of the ride control systems of high-speed craft. This paper investigates the lift characteristics of rectangular stern tabs that are commonly fitted to INCAT wave-piercer catamarans. A test apparatus was developed to enable the testing of a model scale trim tab in a circulating water tunnel in the University of Tasmania hydraulics laboratory. The magnitude and location of the lift force produced by the tab were measured over a range of tab angles and flow velocities. From this the lift coefficient of the tab was calculated and the performance of the tab under varying conditions was analysed. The lift force produced by the tab was shown to increase with velocity and tab angle as expected, with the lift coefficient of the tab increasing linearly with tab angle and remaining relatively constant with increases in flow velocity. The magnitude of the measured lift coefficient was lower than had been previously estimated in shallow water tests and the force was found to act forward of the tab hinge, indicating that much of the lift force generated by the tab is due to the increased pressure on the underside of the hull forward of the tab.


2021 ◽  
Vol 155 (A1) ◽  
Author(s):  
J Bell ◽  
T Arnold ◽  
J Lavroff ◽  
M R Davis

Active trim tabs are commonly used as part of the ride control systems of high-speed craft. This paper investigates the lift characteristics of rectangular stern tabs that are commonly fitted to INCAT wave-piercer catamarans. A test apparatus was developed to enable the testing of a model scale trim tab in a circulating water tunnel in the University of Tasmania hydraulics laboratory. The magnitude and location of the lift force produced by the tab were measured over a range of tab angles and flow velocities. From this the lift coefficient of the tab was calculated and the performance of the tab under varying conditions was analysed. The lift force produced by the tab was shown to increase with velocity and tab angle as expected, with the lift coefficient of the tab increasing linearly with tab angle and remaining relatively constant with increases in flow velocity. The magnitude of the measured lift coefficient was lower than had been previously estimated in shallow water tests and the force was found to act forward of the tab hinge, indicating that much of the lift force generated by the tab is due to the increased pressure on the underside of the hull forward of the tab.


2004 ◽  
Vol 126 (3) ◽  
pp. 333-338 ◽  
Author(s):  
Axel Fischer ◽  
Walter Riess ◽  
Joerg R. Seume

The FVV sponsored project “Bow Blading” (cf. acknowledgments) at the Turbomachinery Laboratory of the University of Hannover addresses the effect of strongly bowed stator vanes on the flow field in a four-stage high-speed axial compressor with controlled diffusion airfoil (CDA) blading. The compressor is equipped with more strongly bowed vanes than have previously been reported in the literature. The performance map of the present compressor is being investigated experimentally and numerically. The results show that the pressure ratio and the efficiency at the design point and at the choke limit are reduced by the increase in friction losses on the surface of the bowed vanes, whose surface area is greater than that of the reference (CDA) vanes. The mass flow at the choke limit decreases for the same reason. Because of the change in the radial distribution of axial velocity, pressure rise shifts from stage 3 to stage 4 between the choke limit and maximum pressure ratio. Beyond the point of maximum pressure ratio, this effect is not distinguishable from the reduction of separation by the bow of the vanes. Experimental results show that in cases of high aerodynamic loading, i.e., between maximum pressure ratio and the stall limit, separation is reduced in the bowed stator vanes so that the stagnation pressure ratio and efficiency are increased by the change to bowed stators. It is shown that the reduction of separation with bowed vanes leads to a increase of static pressure rise towards lower mass flow so that the present bow bladed compressor achieves higher static pressure ratios at the stall limit.


Author(s):  
Axel Fischer ◽  
Walter Riess ◽  
Joerg R. Seume

The FVV-sponsored-Project “Bow Blading” (c.f. acknowledgments) at the Turbomachinery Laboratory of the University of Hannover addresses the effect of strongly bowed stator vanes on the flow field in an 4-stage high speed axial compressor with controlled diffusion airfoil (CDA) blading. The compressor is equipped with more strongly bowed vanes than have previously been reported in the literature. The performance map of the present compressor is being investigated experimentally and numerically. The results show that the pressure ratio and the efficiency at the design point and at the choke limit are reduced by the increase in friction losses on the surface of the bowed vanes, whose surface area is greater than that of the reference (CDA) vanes. The mass flow at the choke limit decreases for the same reason. Because of the change in the radial distribution of axial velocity, pressure rise shifts from stage 3 to stage 4 between the choke limit and maximum pressure ratio. Beyond the point of maximum pressure ratio, this effect is not distinguishable from the reduction of separation by the bow of the vanes. Experimental results show that in cases of high aerodynamic loading, i.e. between maximum pressure ratio and the stall limit, separation is reduced in the bowed stator vanes so that the stagnation pressure ratio and efficiency are increased by the change to bowed stators. It is shown that the reduction of separation with bowed vanes leads to a increase of static pressure rise towards lower mass flow so that the present bow bladed compressor achieves higher static pressure ratios at the stall limit.


2021 ◽  
Vol 158 (A2) ◽  
Author(s):  
J Bell ◽  
J Lavroff ◽  
M R Davis

The ride control systems of high-speed vessels frequently use active stern tabs for both motion control and maintenance of correct trim at various speeds and sea conditions. This paper investigates the effect of water depth on the lift force provided by stern mounted trim tabs, of the type fitted to INCAT high speed wave-piercer catamaran vehicle ferries and similar vessels. This investigation was carried out at model scale with the use of a test apparatus in a flume tank in the University of Tasmania hydraulics laboratory. The lift force magnitude and location were measured over a range of tab angles and flow depths. This was used to calculate the lift coefficient of the tab and asses the performance of the tab over the range of flow depths. It was found that the lift force increased and the force location progressed further forward of the hinge as flow depth decreased. The lift curve slope of the stern tab increased by a factor of over 3 relative to the deep water value when the water depth below the hull was approximately equal to the tab chord. The deep water lift curve slope appears to be approached only when the water depth exceeded 4 or more tab chord lengths. The centre of pressure of the lift force was more than two chord lengths ahead of the tab hinge, showing that most of the lift produced by the tab was under the hull rather than on the surface of the tab itself.


When rocks are cut in coal mines by steel picks, frictional heating sometimes causes ignition of methane; high speed water jets may provide a method of cutting which is free from this hazard. A high speed water jet emerging from a nozzle slows down with increasing distance from the nozzle and breaks up into water drops. Studies were made of the behaviour of water jets: in most of the experiments the jets were produced by pressures of 600 atm., but some results are given of experiments at pressures up to 5000 atm. The jets were examined by short exposure optical photography with several different methods of illumination (parallel transmitted, diffuse, and schlieren) and by X-ray photography. In order to find out how the jet velocity decays with distance from a nozzle, and to compare nozzle designs, a target plate containing a hole smaller than the jet diameter was placed so that the jet impinged at right angles on to it, and the target plate was moved until the maximum pressure at the hole was found: this was measured for different distances from the nozzle. Nozzle shapes suggested in literature for minimizing jet dispersion were studied and an empirical investigation of a variety of nozzle shapes was carried out. Several nozzle shapes were found which gave good results, i.e. the maximum pressure on the target plate was half the pump pressure at a distance of about 350 nozzle diameters. In many cutting applications the first stage in the process would be the impingement of a water jet on a surface at right angles. The initial cutting would depend upon the stress distribution within the target, which in turn would depend upon the pressure distribution produced by the water jet on the surface. A theory is given of the pressure distribution on the target plate, which predicts that the pressure will fall to zero at about 2.6 jet radii: this was found to be in good agreement with experiments. Preliminary studies were made of the penetration of several types of rock by water jets of velocities up to about 1000 m/s (pressures about 5000 atm). It was found that a 1 mm diameter jet drills a cylindrical hole about 5 mm in diameter. The pressure that the water jet produces at the bottom of such holes was measured and shown to fall off to about one-tenth of the nozzle pressure at a hole depth of about 4 cm.


2013 ◽  
Vol 397-400 ◽  
pp. 593-598
Author(s):  
Wen Yu Wu ◽  
Cheng Qi Xue ◽  
Lin Dong Liu

Based on the seat cushions in high-speed train, three main characteristic parameters, surface angle, width and height are involved in this simulation experiment analysis. With this CAE method, a standard buttocks model fit to seat cushion is imported, and the study on seat pressure distribution is taken through characteristic parameters of seat cushions related to different concave surfaces using ANSYS’s finite element analysis, and contribute to much flexible and more adjustable feature points, use seat pressure distribution to determine geometric parameter according to maximum pressure points, the result in this work finally satisfy the standard of optimization, and helps to assist reliability design of seats in high speed train.


Author(s):  
Damien Faux ◽  
Eric Cattan ◽  
Sebastien Grondel ◽  
Olivier Thomas

This work is based on the original concept of coupling two resonant vibration modes to reproduce insect wing kinematics and generate lift. The key issue is designing the geometry and the elastic properties of the artificial wings to achieve quadrature coupling of the bending and twisting motions using only one actuator. Qualitatively, this implies bringing the frequency of the two resonant modes closer. In the light of this challenge, an optimal wing configuration was determined for a micromachined polymer prototype three centimeters wide and validated through experimental modal analyses to illustrate the proximity of the frequencies of the bending and twisting modes. Then, a dedicated lift force measurement bench was developed and used to demonstrate a lift force equivalent to 110% of the prototype weight. For the first time, high-speed camera measurements of the wing motion confirmed that maximum lift was obtained as expected for bending and twisting motions in phase quadrature with a fully resonant motion of the wings using a single actuator.


2021 ◽  
Vol 9 (1) ◽  
pp. 67
Author(s):  
Hiroshi Takagi ◽  
Fumitaka Furukawa

Uncertainties inherent in gate-opening speeds are rarely studied in dam-break flow experiments due to the laborious experimental procedures required. For the stochastic analysis of these mechanisms, this study involved 290 flow tests performed in a dam-break flume via varying gate speeds between 0.20 and 2.50 m/s; four pressure sensors embedded in the flume bed recorded high-frequency bottom pressures. The obtained data were processed to determine the statistical relationships between gate speed and maximum pressure. The correlations between them were found to be particularly significant at the sensors nearest to the gate (Ch1) and farthest from the gate (Ch4), with a Pearson’s coefficient r of 0.671 and −0.524, respectively. The interquartile range (IQR) suggests that the statistical variability of maximum pressure is the largest at Ch1 and smallest at Ch4. When the gate is opened faster, a higher pressure with greater uncertainty occurs near the gate. However, both the pressure magnitude and the uncertainty decrease as the dam-break flow propagates downstream. The maximum pressure appears within long-period surge-pressure phases; however, instances considered as statistical outliers appear within short and impulsive pressure phases. A few unique phenomena, which could cause significant bottom pressure variability, were also identified through visual analyses using high-speed camera images. For example, an explosive water jet increases the vertical acceleration immediately after the gate is lifted, thereby retarding dam-break flow propagation. Owing to the existence of sidewalls, two edge waves were generated, which behaved similarly to ship wakes, causing a strong horizontal mixture of the water flow.


Sign in / Sign up

Export Citation Format

Share Document