scholarly journals AN ADVANCED PROCEDURE FOR THE QUANTITATIVE RISK ASSESSMENT OF OFFSHORE INSTALLATIONS IN EXPLOSIONS

Author(s):  
S J Kim ◽  
J M Sohn ◽  
J K Paik

Hydrocarbon explosion and fire are typical accidents in the offshore oil and gas industry, sometimes with catastrophic consequences such as casualties, property damage and pollution. Successful engineering and design should meet both functional requirements associated with operability in normal conditions and health, safety, environmental and ergonomics (HSE&E) requirements associated with accidental and extreme conditions. A risk-based approach is best for successful design and engineering to meet HSE&E requirements. This study aimed to develop an advanced procedure for assessing the quantitative risk of offshore installations in explosions. Unlike existing industry practices based on prescriptive rules or qualitative approaches, the proposed procedure uses an entirely probabilistic approach. The procedure starts with probabilistic selection of accident scenarios. As the defining components of risk, both the frequency and consequences associated with selected accident scenarios are computed using the most refined technologies. Probabilistic technology is then applied to establish the relationship between the probability of exceedance and the physical values of the accident. Acceptance risk criteria can be applied to define the nominal values of design and/or level of risk. To validate and demonstrate the applicability of the proposed procedure, an example of its application to topside structures of an FPSO unit subjected to hydrocarbon explosions is detailed. The conclusions and insights obtained are documented.

2017 ◽  
Vol Vol 159 (A2) ◽  
Author(s):  
S J Kim ◽  
J M Sohn ◽  
J K Paik

Hydrocarbon explosion and fire are typical accidents in the offshore oil and gas industry, sometimes with catastrophic consequences such as casualties, property damage and pollution. Successful engineering and design should meet both functional requirements associated with operability in normal conditions and health, safety, environmental and ergonomics (HSE&E) requirements associated with accidental and extreme conditions. A risk-based approach is best for successful design and engineering to meet HSE&E requirements. This study aimed to develop an advanced procedure for assessing the quantitative risk of offshore installations in explosions. Unlike existing industry practices based on prescriptive rules or qualitative approaches, the proposed procedure uses an entirely probabilistic approach. The procedure starts with probabilistic selection of accident scenarios. As the defining components of risk, both the frequency and consequences associated with selected accident scenarios are computed using the most refined technologies. Probabilistic technology is then applied to establish the relationship between the probability of exceedance and the physical values of the accident. Acceptance risk criteria can be applied to define the nominal values of design and/or level of risk. To validate and demonstrate the applicability of the proposed procedure, an example of its application to topside structures of an FPSO unit subjected to hydrocarbon explosions is detailed. The conclusions and insights obtained are documented.


Author(s):  
Margaret Downie ◽  
Denise Gosling

In the United Kingdom, oil and gas workers have been transported by helicopter to their workplace at offshore installations for more than fifty years. During that time, there have been numerous fatal helicopter accidents. Despite calls from trade unions, families, and politicians, a public inquiry has never been held into offshore helicopter transport. The authors consider whether enough has been done to ensure the safety of these workers to meet legal and ethical standards. They analyze the legal position, the implementation of recommendations made in the wake of these accidents, and the way in which the power imbalance between oil and gas companies and helicopter operators influences safety in this area. They conclude that a public inquiry is required into helicopter safety in the U.K. Continental Shelf area.


Author(s):  
Adeshina Elegbede ◽  
Ove T. Gudmestad

Piggyback configurations of pipelines, such as a Direct Electrical Heating (DEH) cable mounted on production flowlines, are becoming a common occurrence in the offshore oil and gas industry and they have been observed to excite into a type of flow-induced vibration called galloping in the presence of strong currents at free span locations. This work was aimed at studying potential flow induced galloping vibrations of piggyback type of pipelines commonly used on offshore installations in the oil and gas industry. Tests were carried out in a 12m long, 0.7m wide and 1.2m deep current flume tank located at the NTNU/SINTEF Hydrodynamic Laboratory in Trondheim, Norway. The tank has a test rig with cylinders suspended horizontally on a set of springs mounted on it. Reduced velocities were ranging from 4 to 15, depending on the equivalent diameter of the piggyback pair. In this experimental work, the effects of different diameter ratios and the angle of attack of the flow on the cylinders arranged normal to the flow were investigated. Three different diameter ratio cases were investigated: D+0.5D, D+0.32D and D+0.25D. Attack angles 0°, 30°, 60°, 90°, 120°, 150° and 180° were tested for these 3 diameter ratios giving a total of 21 test cases. The results obtained show that, for all cases of diameters ratios, high response amplitude ratios, as high as 1.7, can occur at reduced velocities less than 10 when the angle of attack is at 90°. It was also observed that vibrations that are characteristic of galloping instabilities occurred at an attack angle of 180° for the D+0.5D and the D+0.32D configurations. For the D+0.25D case, the response amplitudes were similar to a VIV situation. Comparing the response of the different diameter ratios show that the largest pipeline to piggyback ratio gives the largest responses for all attack angles.


1991 ◽  
Vol 18 (3) ◽  
pp. 454-464 ◽  
Author(s):  
Ian J. Jordaan ◽  
Marc A. Maes

The Canadian Standards Association (CSA) initiated effort in 1984 aimed at the development of an offshore code for production structures in the oil and gas industry. The present paper summarizes the rationale behind the development of design load specifications in the preliminary standard S.471 "General requirements, design criteria, the environment, and loads." As part of this development, background calibration studies were conducted in tandem with the work of various committees. Selected results from these studies are also discussed in this paper. The basic objectives and tools for developing load criteria for the design of offshore installations are discussed. The use of economic analyses of cost versus safety of structures does not provide clear guidance, and the perspective taken is that of acceptable risks to an individual. This is used in the context of limit states design, which, in S.471, incorporates two safety classes. In order to provide consistent safety levels, the environmental loads are divided into categories based on frequent and rare occurrence, examples being waves and earthquakes, respectively. The role of the annual probability of failure in setting target levels of reliability as well as in the calibration process is emphasized. Various aspects of calibration are summarized, including the background to the rare-frequent separation of loads, the objective function used to optimize the results, as well as the method of handling model uncertainty. Key words: environment, limit states, loads, offshore, reliability, resistance, safety, structures.


Author(s):  
Grethe Osborg Ose ◽  
Trygve J. Steiro

The introduction of Integrated Operations (IO) in the offshore oil and gas industry makes distanced and distributed decision-making a growing part of normal work. Some functions have been transferred from offshore installations to onshore offices as a consequence of the technologies that have recently become available. The authors analyze whether the onshore organization is ready for increased responsibilities by increasing the resilience in its work patterns, since resilience is important for maintaining or increasing safety level compared to current operation, where personnel on board installations can observe the plant at first hand. This study has been performed as a case study of an onshore Support Center in a drilling company at the start of the process of using the Support Center. The establishment of the Support Center involved re-arranging the office arrangements to an open landscape for all offshore installation support personnel and grouping them according to disciplines. They also acquired new technology, including video conference equipment. Important findings are that developing resilience has to be followed through at all levels of the organization. Time and resources have to be made available when work practices change, providing the physical framework alone does not improve resilience. The study also offers a more detailed description of capability resilience and which aspects should be considered when developing resilience. The authors look at the status so far in the change process and also find areas that should be developed in order to increase resilience further.


Author(s):  
Gao Tang ◽  
Weidong Ruan ◽  
Ting Huang ◽  
Yutian Lu ◽  
Yong Bai

Plastic pipe reinforced by helically cross-winding steel wire (PSP) is a composite pipe, which is being applied into the offshore oil and gas industry. However, PSPs are often subjected to bending loading during the reeling process and offshore installations, which may lead to elliptical buckling due to the Brazier effect. Thus the ovalization instability of PSP under pure bending was investigated in this paper. According to the nonlinear ring theory, the ovalization growth of cross section during bending was studied. Then, the formulation was developed based on the principle of virtual work and was efficiently solved by Newton-Raphson method. Besides, a simplified method was proposed to simulate the behavior of steel wire reinforced layer. To verify the accuracy of the theoretical method, an ABAQUS model was employed to simulate the buckling response of PSP under pure bending. The results obtained from the theoretical method were compared with ABAQUS simulation results, and they show excellent agreements. The results can be used for predicting PSP’s bending behavior in offshore engineering applications.


2016 ◽  
Vol 22 (3) ◽  
pp. 238-251 ◽  
Author(s):  
Mayang Kusumawardhani ◽  
Rajesh Kumar ◽  
Markeset Tore

Purpose – The purpose of this paper is to identify the challenges facing asset integrity management (AIM) practices in the oil and gas industry, in order to continually develop AIM practices in organisations. The focus is to investigate various challenges in fluctuating oil and gas market conditions, and how organisations can continuously ensure the safety and integrity of their offshore facilities. Design/methodology/approach – AIM challenges were identified by analysing data from literature study, guided interviews and web-based questionnaire with industrial experts in regions in North America, Southeast Asia and Norway. The results are validated through triangulation method with both quantitative and qualitative technique, as well as comparison with other studies. Findings – The paper identifies, analyses and validates the challenges and factors that may impact the management of asset integrity on offshore installations. The challenges were discussed to develop understanding of the root cause and thus aim to resolve underlying issues. Research limitations/implications – The paper focuses on offshore production installations with experts from organisations that have experience in Gulf of Mexico, Brazil, South Asia, Southeast Asia and Norway fields. The sample of respondents may not represent the entire population; however, the same approach and result can be used in similar topics and conditions. Originality/value – The identified challenges can be used by organisations to resolve underlying AIM challenges, improve their AIM strategy and obtain insights into current AIM practices in the petroleum industry.


Sign in / Sign up

Export Citation Format

Share Document