scholarly journals Towards trustworthy cloud service selection: monitoring and assessing data privacy

Author(s):  
Tania Basso ◽  
Hebert de Oliveira Silva ◽  
Leonardo Montecchi ◽  
Breno Bernard Nicolau de França ◽  
Regina Lúcia de Oliveira Moraes

Cloud services consumers deal with a major challenge in selecting services from several providers. Facilitating these choices has become critical, and an important factor is the service trustworthiness. To be trusted by users, cloud providers should explicitly communicate their capabilities to ensure important functional and non-functional requirements (such as security, privacy, dependability, fairness, among others). Thus, models and mechanisms are required to provide indicators that can be used to support clients on choosing high quality services. This paper presents a solution to support privacy measurement and analysis, which can help the computation of trustworthiness scores. The solution is composed of a reference model for trustworthiness, a privacy model instance, and a privacy monitoring and assessment component. Finally, we provide an implementation capable of monitoring privacy-related information and performing analysis based on privacy scores for eight different datasets.

Author(s):  
Ajai K. Daniel

The cloud-based computing paradigm helps organizations grow exponentially through means of employing an efficient resource management under the budgetary constraints. As an emerging field, cloud computing has a concept of amalgamation of database techniques, programming, network, and internet. The revolutionary advantages over conventional data computing, storage, and retrieval infrastructures result in an increase in the number of organizational services. Cloud services are feasible in all aspects such as cost, operation, infrastructure (software and hardware) and processing. The efficient resource management with cloud computing has great importance of higher scalability, significant energy saving, and cost reduction. Trustworthiness of the provider significantly influences the possible cloud user in his selection of cloud services. This chapter proposes a cloud service selection model (CSSM) for analyzing any cloud service in detail with multidimensional perspectives.


2020 ◽  
Author(s):  
Falak Nawaz ◽  
Naeem Khalid Janjua

Abstract The number of cloud services has dramatically increased over the past few years. Consequently, finding a service with the most suitable quality of service (QoS) criteria matching the user’s requirements is becoming a challenging task. Although various decision-making methods have been proposed to help users to find their required cloud services, some uncertainties such as dynamic QoS variations hamper the users from employing such methods. Additionally, the current approaches use either static or average QoS values for cloud service selection and do not consider dynamic QoS variations. In this paper, we overcome this drawback by developing a broker-based approach for cloud service selection. In this approach, we use recently monitored QoS values to find a timeslot weighted satisfaction score that represents how well a service satisfies the user’s QoS requirements. The timeslot weighted satisfaction score is then used in Best-Worst Method, which is a multi-criteria decision-making method, to rank the available cloud services. The proposed approach is validated using Amazon’s Elastic Compute Cloud (EC2) cloud services performance data. The results show that the proposed approach leads to the selection of more suitable cloud services and is also efficient in terms of performance compared to the existing analytic hierarchy process-based cloud service selection approaches.


2020 ◽  
Vol 31 (4) ◽  
pp. 411-424
Author(s):  
Han Lai ◽  
Huchang Liao ◽  
Zhi Wen ◽  
Edmundas Kazimieras Zavadskas ◽  
Abdullah Al-Barakati

With the rapid growth of available online cloud services and providers for customers, the selection of cloud service providers plays a crucial role in on-demand service selection on a subscription basis. Selecting a suitable cloud service provider requires a careful analysis and a reasonable ranking method. In this study, an improved combined compromise solution (CoCoSo) method is proposed to identify the ranking of cloud service providers. Based on the original CoCoSo method, we analyze the defects of the final aggregation operator in the original CoCoSo method which ignores the equal importance of the three subordinate compromise scores, and employ the operator of “Linear Sum Normalization” to normalize the three subordinate compromise scores so as to make the results reasonable. In addition, we introduce a maximum variance optimization model which can increase the discrimination degree of evaluation results and avoid inconsistent ordering. A numerical example of the trust evaluation of cloud service providers is given to demonstrate the applicability of the proposed method. Furthermore, we perform sensitivity analysis and comparative analysis to justify the accuracy of the decision outcomes derived by the proposed method. Besides, the results of discrimination test also indicate that the proposed method is more effective than the original CoCoSo method in identifying the subtle differences among alternatives.


2021 ◽  
Author(s):  
Raed Karim

Cloud services are designed to provide users with different computing models such as software-as-a-Services (SaaS), Infrastructure-as-a-Service (IaaS), Data-as-a-Service (DaaS), and other IT related services (denoted as XaaS). Easy, scalable and on-demand cloud services are offered by cloud providers to users. With the prevalence of different types of cloud services, the task of selecting the best cloud service solution has become more and more challenging. Cloud service solutions are offered through a collaboration of different cloud services at different cloud layers. This type of collaborations is denoted as vertical service composition. Quality of Service (QoS) properties are used as differentiating factors for selecting the best services among functionally equivalent services. In this thesis, we introduce a new service selection framework for the cloud which vertically matches services offered by different cloud providers based on users’ end-to-end QoS requirements. Functional requirements can be satisfied by the required cloud service (software service, platform service, etc) alone. However, users’ QoS requirements must be satisfied using all involved cloud services in a service composition. Therefore, in order to select the best cloud service compositions for users, QoS values of these compositions must be end-to-end. To tackle the problem of computing unknown end-to-end QoS values of vertical cloud service compositions for target users (for whom these values are computed), we propose two strategies: QoS mapping and aggregation and QoS prediction. The former deals with new cloud service compositions with no prior history. Using this strategy, we can map users’ QoS requirements onto different cloud layers and then we aggregate QoS values guaranteed by cloud providers to estimate end-to-end QoS values. The latter deals with cloud service compositions for which QoS data have been recorded in an active system. Using the QoS prediction strategy, we utilize historical QoS data of previously invoked service compositions and other service and user information to predict end-to-end QoS values. The presented experimental results demonstrate the importance of considering vertically composed cloud services when computing end-to-end QoS values as opposed to traditional prediction approaches. Our QoS prediction approach outperforms other prediction approaches in terms of the prediction accuracy by at least 20%.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Xu Wu

Mobile cloud computing (MCC) has attracted extensive attention in recent years. With the prevalence of MCC, how to select trustworthy and high quality mobile cloud services becomes one of the most urgent problems. Therefore, this paper focuses on the trustworthy service selection and recommendation in mobile cloud computing environments. We propose a novel service selection and recommendation model (SSRM), where user similarity is calculated based on user context information and interest. In addition, the relational degree among services is calculated based on PropFlow algorithm and we utilize it to improve the accuracy of ranking results. SSRM supports a personalized and trusted selection of cloud services through taking into account mobile user’s trust expectation. Simulation experiments are conducted on ns3 simulator to study the prediction performance of SSRM compared with other two traditional approaches. The experimental results show the effectiveness of SSRM.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Md Whaiduzzaman ◽  
Abdullah Gani ◽  
Nor Badrul Anuar ◽  
Muhammad Shiraz ◽  
Mohammad Nazmul Haque ◽  
...  

Cloud computing (CC) has recently been receiving tremendous attention from the IT industry and academic researchers. CC leverages its unique services to cloud customers in a pay-as-you-go, anytime, anywhere manner. Cloud services provide dynamically scalable services through the Internet on demand. Therefore, service provisioning plays a key role in CC. The cloud customer must be able to select appropriate services according to his or her needs. Several approaches have been proposed to solve the service selection problem, including multicriteria decision analysis (MCDA). MCDA enables the user to choose from among a number of available choices. In this paper, we analyze the application of MCDA to service selection in CC. We identify and synthesize several MCDA techniques and provide a comprehensive analysis of this technology for general readers. In addition, we present a taxonomy derived from a survey of the current literature. Finally, we highlight several state-of-the-art practical aspects of MCDA implementation in cloud computing service selection. The contributions of this study are four-fold: (a) focusing on the state-of-the-art MCDA techniques, (b) highlighting the comparative analysis and suitability of several MCDA methods, (c) presenting a taxonomy through extensive literature review, and (d) analyzing and summarizing the cloud computing service selections in different scenarios.


2021 ◽  
Author(s):  
Sameer Singh Chauhan ◽  
Emmanuel S Pilli ◽  
R C Joshi

Abstract Federated Cloud is a multi-cloud platform that integrates various cloud providers either through standardization or an agreement. The services offered by different federation members possess different access patterns, similar characteristics, varied performance levels, different costs, etc. This heterogeneity creates a challenging task for users to decide a suitable service as per their application requirements. Cloud broker, an inter-mediator is required in service and federation management to help both service provider and users. Cloud broker has to store all the information related to services and feedback of users on those services in order to provide the best services to end-users. Brokering model for service selection (BSS) has been proposed which employs integrated weighting approach in cloud service selection. Subjective and objective weights of QoS attributes are combined to compute integrated total weight. Subjective weight is obtained from users’ feedback on QoS attributes of a cloud service while objective weight is computed from benchmark tested data of cloud services. Users' feedback and preferences given to QoS parameters are employed in subjective weight computation. Objective weight is computed using Shannon's Entropy method. Total weight is obtained by combining subjective and objective weights. BSS method is employed to rank cloud services. Simulation with a case study on real dataset has been done to validate the effectiveness of BSS. The obtained results demonstrate the consistency of model for handling rank reversal problem and provides better execution time than other state-of-the art solutions.


Author(s):  
Svetlana Abdulaevna Feylamazova ◽  
Zukhra Khalipaevna Akhmedova ◽  
Zinfirat Shagumilaevna Abdurazakova

The development of Internet technologies allows remote control of various devices. The paper presents a description of a greenhouse microclimate control device with remote control. There are used the concept of the Internet of Things, which allows to remotely control devices using cloud services. The Internet of Things is one of the popular trends in the networking environment allowing data to be transferred between devices. There is no need to write a program to transfer data, it is enough to use one of the many existing cloud services. The cloud service records the microclimate parameters and displays them on-line on the user's computer or phone. The user can observe the data received from the sensors installed in the greenhouse and control the executive devices, namely, turn on and off the heating, irrigation, lighting and opening of the vents. The device under development will help not only take the microclimate indicators in the room and transfer them via the Internet to a personal computer or telephone while being remote from the measurement object, but also control the actuators inside the greenhouse. The functional requirements for the developed device are determined, the block diagram of the device is shown, the main element of which is the Arduino Uno board, on which not only the microcontroller is located, but also the connectors of external devices. The user interface is presented and described, which provides interaction between a user and a control object, developed in the IoControl cloud service, and the stages of its development are also presented. The modes of microclimate control and the corresponding actuators and variables are considered.


Cloud computing allows on-demand access and fast network connection to a shared resource pool. Most companies are switching to Cloud due to the popularity and benefits of using Cloud Services. So finding a suitable and best cloud provider is a challenge for all users. Several ranking methods, such as AHP, TOPSIS, had been suggested to solve this problem by multicriteria decision making techniques. But, many of the works focused on a subset of the main QoS attributes for ranking. Cloud Services Measurement Initiatives Consortium (CSMIC) has released Service Measurement Index attributes for effectively comparing the Cloud services. The comparison of services provided by cloud based on SMI attributes which are qualitative as well as quantitative in nature is studied in this paper by one of the non-parametric methods called Data Envelopment Analysis (DEA) and ranked the cloud services based on the efficiency scores obtained by DEA. The cloud users can select the best suitable Cloud service using the proposed approach that best suit their QoS requirements.


Author(s):  
Zhitao Wan

To migrate on-premises business systems to the cloud environment faces challenges: the complexity, diversity of the legacy systems, cloud, and cloud migration services. Consequently, the cloud migration faces two major problems. The first one is how to select cloud services for the legacy systems, and the second one is how to move the corresponding workload from legacy systems to cloud. This chapter presents a total cloud migration solution including cloud service selection and optimization, cloud migration pattern generation, and cloud migration pattern enforcement. It takes the pattern as the core, and unifies the cloud migration request, the cloud migration service pattern, and the cloud migration service composition. A cloud migration example of blockchain system shows that the proposed approach improves the cloud service selection, cloud migration service composition generation efficiency, migration process parallelization, and enables long transaction support by means of pattern reuse.


Sign in / Sign up

Export Citation Format

Share Document