scholarly journals Pulmonary Nodule Classification with 3D Convolutional Neural Networks

2019 ◽  
Author(s):  
Anthony E. A. Jatobá ◽  
Lucas L. Lima ◽  
Marcelo C. Oliveira

Lung cancer is a leading cause of death worldwide and its early detection is critical for patient survival. However, the diagnosis is still a challenging task, in which computeraided diagnosis (CADx) systems try to assist by providing a second opinion to a radiologist. In this work, we propose a 3D Convolutional Neural Network for classification of solid pulmonary nodules into benign and malignant. We evaluated different approaches for the nodule volume assembling and tuned our models in an automated fashion. Our models achieved satisfactory results, with AUC of 0.89, accuracy of 81.37% and a sensibility of 84.83%. Moreover, our results have shown that the first slices of a nodule provide the best results and only five nodule slices are enough for a 3D CNN achieve its best results.

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Ahmet Tartar ◽  
Niyazi Kilic ◽  
Aydin Akan

Early detection of pulmonary nodules is extremely important for the diagnosis and treatment of lung cancer. In this study, a new classification approach for pulmonary nodules from CT imagery is presented by using hybrid features. Four different methods are introduced for the proposed system. The overall detection performance is evaluated using various classifiers. The results are compared to similar techniques in the literature by using standard measures. The proposed approach with the hybrid features results in 90.7% classification accuracy (89.6% sensitivity and 87.5% specificity).


1991 ◽  
Vol 45 (10) ◽  
pp. 1706-1716 ◽  
Author(s):  
Mark Glick ◽  
Gary M. Hieftje

Artificial neural networks were constructed for the classification of metal alloys based on their elemental constituents. Glow discharge-atomic emission spectra obtained with a photodiode array spectrometer were used in multivariate calibrations for 7 elements in 37 Ni-based alloys (different types) and 15 Fe-based alloys. Subsets of the two major classes formed calibration sets for stepwise multiple linear regression. The remaining samples were used to validate the calibration models. Reference data from the calibration sets were then pooled into a single set to train neural networks with different architectures and different training parameters. After the neural networks learned to discriminate correctly among alloy classes in the training set, their ability to classify samples in the testing set was measured. In general, the neural network approach performed slightly better than the K-nearest neighbor method, but it suffered from a hidden classification mechanism and nonunique solutions. The neural network methodology is discussed and compared with conventional sample-classification techniques, and multivariate calibration of glow discharge spectra is compared with conventional univariate calibration.


2021 ◽  
Author(s):  
Luke Gundry ◽  
Gareth Kennedy ◽  
Alan Bond ◽  
Jie Zhang

The use of Deep Neural Networks (DNNs) for the classification of electrochemical mechanisms based on training with simulations of the initial cycle of potential have been reported. In this paper,...


Author(s):  
Valerii Dmitrienko ◽  
Sergey Leonov ◽  
Mykola Mezentsev

The idea of ​​Belknap's four-valued logic is that modern computers should function normally not only with the true values ​​of the input information, but also under the conditions of inconsistency and incompleteness of true failures. Belknap's logic introduces four true values: T (true - true), F (false - false), N (none - nobody, nothing, none), B (both - the two, not only the one but also the other).  For ease of work with these true values, the following designations are introduced: (1, 0, n, b). Belknap's logic can be used to obtain estimates of proximity measures for discrete objects, for which the functions Jaccard and Needhem, Russel and Rao, Sokal and Michener, Hamming, etc. are used. In this case, it becomes possible to assess the proximity, recognition and classification of objects in conditions of uncertainty when the true values ​​are taken from the set (1, 0, n, b). Based on the architecture of the Hamming neural network, neural networks have been developed that allow calculating the distances between objects described using true values ​​(1, 0, n, b). Keywords: four-valued Belknap logic, Belknap computer, proximity assessment, recognition and classification, proximity function, neural network.


2020 ◽  
Vol 63 (10) ◽  
pp. 856-861
Author(s):  
A. V. Fedosov ◽  
G. V. Chumachenko

The article considers the issues of monitoring the thermal conditions of alloys melting and casting at foundries. It is noted that the least reliable method is when the measurement and fixing the temperature is assigned to the worker. On the other hand, a fully automatic approach is not always available for small foundries. In this regard, the expediency of using an automated approach is shown, in which the measurement is assigned to the worker, and the values are recorded automatically. This method assumes implementation of an algorithm for automatic classification of temperature measurements based on an end-to-end array of data obtained in the production stream. The solving of this task is divided into three stages. Preparing of raw data for classification process is provided on the first stage. On the second stage, the task of measurement classification is solved by using neural network principles. Analysis of the results of the artificial neural network has shown its high efficiency and degree of their correspondence with the actual situation on the work site. It was also noted that the application of artificial neural networks principles makes the classification process flexible, due to the ability to easily supplement the process with new parameters and neurons. The final stage is analysis of the obtained results. Correctly performed data classification provides an opportunity not only to assess compliance with technological discipline at the site, but also to improve the process of identifying the causes of casting defects. Application of the proposed approach allows us to reduce the influence of human factor in the analysis of thermal conditions of alloys melting and casting with minimal costs for melting monitoring.


2003 ◽  
Vol 15 (3) ◽  
pp. 278-285
Author(s):  
Daigo Misaki ◽  
◽  
Shigeru Aomura ◽  
Noriyuki Aoyama

We discuss effective pattern recognition for contour images by hierarchical feature extraction. When pattern recognition is done for an unlimited object, it is effective to see the object in a perspective manner at the beginning and next to see in detail. General features are used for rough classification and local features are used for a more detailed classification. D-P matching is applied for classification of a typical contour image of individual class, which contains selected points called ""landmark""s, and rough classification is done. Features between these landmarks are analyzed and used as input data of neural networks for more detailed classification. We apply this to an illustrated referenced book of insects in which much information is classified hierarchically to verify the proposed method. By introducing landmarks, a neural network can be used effectively for pattern recognition of contour images.


2018 ◽  
Vol 2 (1) ◽  
pp. 5
Author(s):  
Agus Sifaunajah ◽  
Kusworo Adi ◽  
Faikhin .

Assessment of the performance of civil servants (PNS) is still considered less objective and subjective tended to by some, so we need a solution to improve the objectivity of assessment. The target of employee work (SKP) is one solution to improve objectivity in the assessment of civil servants. Backpropagation is one of the methods in neural networks which is implemented in the information systems of SKP for used classification of data performance. Observation and literature became the method of data collection in this study. Web-based information systems of skp are facilitated for employees in the preparation of assessments. Backpropagation can be implemented to perform data classification of performance. Keyword: Neural network; Backpropagation, Classification, SKP Received: 2 February, 2017; Accepter: 15 March, 2017


2021 ◽  
pp. 20210038
Author(s):  
Wutian Gan ◽  
Hao Wang ◽  
Hengle Gu ◽  
Yanhua Duan ◽  
Yan Shao ◽  
...  

Objective: A stable and accurate automatic tumor delineation method has been developed to facilitate the intelligent design of lung cancer radiotherapy process. The purpose of this paper is to introduce an automatic tumor segmentation network for lung cancer on CT images based on deep learning. Methods: In this paper, a hybrid convolution neural network (CNN) combining 2D CNN and 3D CNN was implemented for the automatic lung tumor delineation using CT images. 3D CNN used V-Net model for the extraction of tumor context information from CT sequence images. 2D CNN used an encoder–decoder structure based on dense connection scheme, which could expand information flow and promote feature propagation. Next, 2D features and 3D features were fused through a hybrid module. Meanwhile, the hybrid CNN was compared with the individual 3D CNN and 2D CNN, and three evaluation metrics, Dice, Jaccard and Hausdorff distance (HD), were used for quantitative evaluation. The relationship between the segmentation performance of hybrid network and the GTV volume size was also explored. Results: The newly introduced hybrid CNN was trained and tested on a dataset of 260 cases, and could achieve a median value of 0.73, with mean and stand deviation of 0.72 ± 0.10 for the Dice metric, 0.58 ± 0.13 and 21.73 ± 13.30 mm for the Jaccard and HD metrics, respectively. The hybrid network significantly outperformed the individual 3D CNN and 2D CNN in the three examined evaluation metrics (p < 0.001). A larger GTV present a higher value for the Dice metric, but its delineation at the tumor boundary is unstable. Conclusions: The implemented hybrid CNN was able to achieve good lung tumor segmentation performance on CT images. Advances in knowledge: The hybrid CNN has valuable prospect with the ability to segment lung tumor.


2020 ◽  
pp. 487-501
Author(s):  
Steven Walczak ◽  
Senanu R. Okuboyejo

This study investigates the use of artificial neural networks (ANNs) to classify reasons for medication nonadherence. A survey method is used to collect individual reasons for nonadherence to treatment plans. Seven reasons for nonadherence are identified from the survey. ANNs using backpropagation learning are trained and validated to produce a nonadherence classification model. Most patients identified multiple reasons for nonadherence. The ANN models were able to accurately predict almost 63 percent of the reasons identified for each patient. After removal of two highly common nonadherence reasons, new ANN models are able to identify 73 percent of the remaining nonadherence reasons. ANN models of nonadherence are validated as a reliable medical informatics tool for assisting healthcare providers in identifying the most likely reasons for treatment nonadherence. Physicians may use the identified nonadherence reasons to help overcome the causes of nonadherence for each patient.


Sign in / Sign up

Export Citation Format

Share Document