Calculation and Analysis of Transformer Inrush Current Based on Parameters of Transformer and Operating Conditions

1970 ◽  
Vol 109 (3) ◽  
pp. 17-20 ◽  
Author(s):  
M. Jamali ◽  
M. Mirzaie ◽  
S. Asghar-Gholamian

An inrush current is a transient current with high amplitude that may occur when a transformer is energized under no load or lightly loaded conditions. The magnitude of inrush current may be as high as ten times or more times of transformer rated current. This could result in huge mechanical and thermal stresses on transformer in addition to inadvertent operation of the protective relay systems. This paper represents the effects of some factors on the inrush current of transformers. For this purpose, a one-phase transformer is simulated in MATLAB and the effects of switching angle variation, the energizing circuit impedance and the remanent flux on the characteristics of inrush current are investigated. The results show that increasing circuit resistance or switching angle will decrease inrush current amplitude. Also, it is concluded that for reducing inrush current, appropriate switching angle with respect to the remanent flux must be selected. The results can be used for a better understanding of the inrush current characteristics and proper actions of the protective system. Ill. 7, bibl. 13, tabl. 1 (in English; abstracts in English and Lithuanian).http://dx.doi.org/10.5755/j01.eee.109.3.162

After evaluation of reliability in the previous chapters and its consideration as a converter figure of merit, in this and the next chapters, guidelines for improvement of reliability are presented. These methods are used in both design and operation process of the converter. The focus of this chapter is on the component stress reduction in the design process. Based on background of chapter two, reliability of a converter increases if it operates at a set point with low stress. It is assumed that the converter is under design process or operates without fault. The methods for reliability improvement in faulty converters are discussed in the next chapters. In this chapter, methods for reducing electric field are described at both system and printed circuit board level. Low temperature operating conditions for an electric power converter are described and tools for this goal are presented. Series connection for voltage sharing and parallel connection for current sharing is explained. Novel control methods of power converters for reducing the complexity and reliable operation are presented. Control of inrush current as a typical transient problem in electric power converters is presented. Methods for preventing the over stress condition on the components in faulty cases are described. Techniques for reducing mechanical and environmental stress are expressed. Mechanical dampers for preventing the high amplitude vibration and insulating colors against humidity are presented. Industrial and real samples are presented to demonstrate application of the proposed methods.


1970 ◽  
Vol 108 (2) ◽  
pp. 67-70 ◽  
Author(s):  
M. Jamali ◽  
M. Mirzaie ◽  
S. Asghar-Gholamian

Energization of a transformer under no load or lightly loaded conditions may result in inrush current with high amplitude that can be comparable with the fault currents. These currents have undesirable effects, including malfunction of the differential relay, mechanical and thermal stresses on transformer and reduced power quality of the system. In this paper, a sequential phase energization technique has been used to mitigate magnetizing inrush current in a grounded system. Because in this technique, the size of the resistor, which is connected to the neutral point of the transformer, has an important role, analytical formulas have been derived to calculate inrush current amplitude with a neutral resistor. These analytical formulas have been implemented in the M-File of the MATLAB software for calculation of different inrush current reduction ratio. Then for the verification of the results, the obtained neutral resistor has beenapplied to the equivalent circuit of a typical three-phase transformer and inrush current reduction has been determined by MATLAB SIMULINK. Ill. 7, bibl. 13 (in English; abstracts in English and Lithuanian).http://dx.doi.org/10.5755/j01.eee.108.2.147


1996 ◽  
Vol 118 (1) ◽  
pp. 164-172 ◽  
Author(s):  
C. H. Amon ◽  
K. S. Schmaltz ◽  
R. Merz ◽  
F. B. Prinz

A molten metal droplet landing and bonding to a solid substrate is investigated with combined analytical, numerical, and experimental techniques. This research supports a novel, thermal spray shape deposition process, referred to as microcasting, capable of rapidly manufacturing near netshape, steel objects. Metallurgical bonding between the impacting droplet and the previous deposition layer improves the strength and material property continuity between the layers, producing high-quality metal objects. A thorough understanding of the interface heat transfer process is needed to optimize the microcast object properties by minimizing the impacting droplet temperature necessary for superficial substrate remelting, while controlling substrate and deposit material cooling rates, remelt depths, and residual thermal stresses. A mixed Lagrangian–Eulerian numerical model is developed to calculate substrate remelting and temperature histories for investigating the required deposition temperatures and the effect of operating conditions on remelting. Experimental and analytical approaches are used to determine initial conditions for the numerical simulations, to verify the numerical accuracy, and to identify the resultant microstructures. Numerical results indicate that droplet to substrate conduction is the dominant heat transfer mode during remelting and solidification. Furthermore, a highly time-dependent heat transfer coefficient at the droplet/substrate interface necessitates a combined numerical model of the droplet and substrate for accurate predictions of the substrate remelting. The remelting depth and cooling rate numerical results are also verified by optical metallography, and compare well with both the analytical solution for the initial deposition period and the temperature measurements during droplet solidification.


2021 ◽  
Author(s):  
Eva Alvarez-Regueiro ◽  
Esperanza Barrera-Medrano ◽  
Ricardo Martinez-Botas ◽  
Srithar Rajoo

Abstract This paper presents a CFD-based numerical analysis on the potential benefits of non-radial blading turbine for low speed-low pressure applications. Electric turbocompounding is a waste heat recovery technology consisting of a turbine coupled to a generator that transforms the energy left over in the engine exhaust gases, which is typically found at low pressure, into electricity. Turbines designed to operate at low specific speed are ideal for these applications since the peak efficiency occurs at lower pressure ratios than conventional high speed turbines. The baseline design consisted of a vaneless radial fibre turbine, operating at 1.2 pressure ratio and 28,000rpm. Experimental low temperature tests were carried out with the baseline radial blading turbine at nominal, lower and higher pressure ratio operating conditions to validate numerical simulations. The baseline turbine incidence angle effect was studied and positive inlet blade angle impact was assessed in the current paper. Four different turbine rotor designs of 20, 30, 40 and 50° of positive inlet blade angle are presented, with the aim to reduce the losses associated to positive incidence, specially at midspan. The volute domain was included in all CFD calculations to take into account the volute-rotor interactions. The results obtained from numerical simulations of the modified designs were compared with those from the baseline turbine rotor at design and off-design conditions. Total-to-static efficiency improved in all the non-radial blading designs at all operating points considered, by maximum of 1.5% at design conditions and 5% at off-design conditions, particularly at low pressure ratio. As non-radial fibre blading may be susceptible to high centrifugal and thermal stresses, a structural analysis was performed to assess the feasibility of each design. Most of non-radial blading designs showed acceptable levels of stress and deformation.


Author(s):  
Valery Ponyavin ◽  
Taha Mohamed ◽  
Mohamed Trabia ◽  
Yitung Chen ◽  
Anthony E. Hechanova

Ceramics are suitable for use in high temperature applications as well as corrosive environment. These characteristics were the reason behind selection silicone carbide for a high temperature heat exchanger and chemical decomposer, which is a part of the Sulphur-Iodine (SI) thermo-chemical cycle. The heat exchanger is expected to operate in the range of 950°C. The proposed design is manufactured using fused ceramic layers that allow creation of micro-channels with dimensions below one millimeter. A proper design of the heat exchanges requires considering possibilities of failure due to stresses under both steady state and transient conditions. Temperature gradients within the heat exchanger ceramic components induce thermal stresses that dominate other stresses. A three-dimensional computational model is developed to investigate the fluid flow, heat transfer and stresses in the decomposer. Temperature distribution in the solid is imported to finite element software and used with pressure loads for stress analysis. The stress results are used to calculate probability of failure based on Weibull failure criteria. Earlier analysis showed that stress results at steady state operating conditions are satisfactory. The focus of this paper is to consider stresses that are induced during transient scenarios. In particular, the cases of startup and shutdown of the heat exchanger are considered. The paper presents an evaluation of the stresses in these two cases.


In the past three decades, it is very challenging for the researchers to design and development a best gas turbine engine component. Engine component has to face different operating conditions at different working environments. Nickel based superalloys are the best material to design turbine components. Inconel 718, Inconel 617, Hastelloy, Monel and Udimet are the common material used for turbine components. Directional solidification is one of the conventional casting routes followed to develop turbine blades. It is also reported that the raw materials are heat treated / age hardened to enrich the desired properties of the material implementation. Accordingly they are highly susceptible to mechanical and thermal stresses while operating. The hot section of the turbine components will experience repeated thermal stress. The halides in the combination of sulfur, chlorides and vanadate are deposited as molten salt on the surface of the turbine blade. On prolonged exposure the surface of the turbine blade starts to peel as an oxide scale. Microscopic images are the supportive results to compare the surface morphology after complete oxidation / corrosion studies. The spectroscopic results are useful to identify the elemental analysis over oxides formed. The predominant oxides observed are NiO, Cr2O3, Fe2O3 and NiCr2O4. These oxides are vulnerable on prolonged exposure and according to PB ratio the passivation are very less. In recent research, the invention on nickel based superalloys turbine blades produced through other advanced manufacturing process is also compared. A summary was made through comparing the conventional material and advanced materials performance of turbine blade material for high temperature performance.


Author(s):  
N. Fdida ◽  
J. Hardi ◽  
H. Kawashima ◽  
B. Knapp ◽  
M. Oschwald ◽  
...  

Experiments presented in this paper were conducted with the BKH rocket combustor at the European Research and Technology Test Facility P8, located at DLR Lampoldshausen. This combustor is dedicated to study the effects of high magnitude instabilities on oxygen/hydrogen flames, created by forcing high-frequency (HF) acoustic resonance of the combustion chamber. This work addresses the need for highly temporally and spatially resolved visualization data, in operating conditions representative of real rocket engines, to better understand the flame response to high amplitude acoustic oscillations. By combining ONERA and DLR materials and techniques, the optical setup of this experiment has been improved to enhance the existing database with more highly resolved OH* imaging to allow detailed response analysis of the flame. OH* imaging is complemented with simultaneous visible imaging and compared to each other here for their ability to capture flame dynamics.


2021 ◽  
Author(s):  
Zhichang Liu ◽  
Xin Yin ◽  
Yuanlin Pan ◽  
Wei Xi ◽  
Xianggen Yin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document