scholarly journals Uncovering the Relation Between Environmental Damage and the Rate of Rainfall Received Through a Life Cycle Assessment (LCA) Study on Potable Water Production in Malaysia

Author(s):  
Amir Hamzah ◽  
Noor Zalina ◽  
Abdul Halim
Buildings ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 54
Author(s):  
Amir Oladazimi ◽  
Saeed Mansour ◽  
Seyed Abbas Hosseinijou

Given the fact that during the recent years the majority of buildings in Iran have been constructed either on steel or concrete frames, it is essential to investigate the environmental impacts of materials used in such constructions. For this purpose, two multi-story residential buildings in Tehran with a similar function have been considered in this study. One building was constructed with a steel frame and the other was constructed with a concrete frame. Using the life cycle assessment tool, a complete analysis of all the stages of a building’s life cycle from raw material acquisition to demolition and recycling of wastes was carried out. In this research, the environmental impacts included global warming potential in 100 years, acidification, eutrophication potential, human toxicity (cancer and non-cancer effects), resource depletion (water and mineral), climate change, fossil fuel consumption, air acidification and biotoxicity. It could be concluded from the results that the total pollution of the concrete frame in all eleven aforementioned impact factors was almost 219,000 tonnes higher than that of the steel frame. Moreover, based on the results, the concrete frame had poorer performance in all but one impact factor. With respect to global warming potential, the findings indicated there were two types of organic and non-organic gases that had an impact on global warming. Among non-organic emissions, CO2 had the biggest contribution to global warming potential, while among organic emissions, methane was the top contributor. These findings suggest the use of steel frames in the building industry in Iran to prevent further environmental damage; however, in the future, more research studies in this area are needed to completely investigate all aspects of decision on the choice of building frames, including economic and social aspects.


2016 ◽  
Vol 507 ◽  
pp. 165-178 ◽  
Author(s):  
Ryan W. Holloway ◽  
Leslie Miller-Robbie ◽  
Mehul Patel ◽  
Jennifer R. Stokes ◽  
Junko Munakata-Marr ◽  
...  

2021 ◽  
Author(s):  
Sampatrao Manjare ◽  
Amit Shanbag

Abstract Methyl bromide is an effective and useful insecticide. It has ability to enter rapidly into materials at room temperature & pressure. Nowadays, it is primarily used for container fumigation purposes. However, exposure to it causes serious health-related issues. It is also one of the ozone-depleting substances. In this work, “cradle to gate” and “cradle to grave” approaches are considered to carry out a life cycle assessment of methyl bromide production. SimaPro software with the IMPACT 2002+ method is used to compute the results. From the results of cradle to gate approach, it is inferred that major emissions are due to usage of plant utilities and methanol production process which have a substantial effect on the atmosphere. From the results of cradle to grave approach, it is noted that application of methyl bromide causes significant environmental damage particularly to ozone layer followed by non-carcinogen.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6591 ◽  
Author(s):  
Shinji Takeshita ◽  
Hooman Farzaneh ◽  
Mehrnoosh Dashti

In this paper, a comprehensive life-cycle assessment (LCA) is carried out in order to evaluate the multiple environmental-health impacts of the biological wastewater treatment of the fish-processing industry throughout its life cycle. To this aim, the life-cycle impact assessment method based on endpoint modeling (LIME) was considered as the main LCA model. The proposed methodology is based on an endpoint modeling framework that uses the conjoint analysis to calculate damage factors for human health, social assets, biodiversity, and primary production, based on Indonesia’s local data inventory. A quantitative microbial risk assessment (QMRA) is integrated with the LIME modeling framework to evaluate the damage on human health caused by five major biological treatment technologies, including chemical-enhanced primary clarification (CEPC), aerobic-activated sludge (AS), up-flow anaerobic sludge blanket (UASB), ultrafiltration (UF) and reverse osmosis (RO) in this industry. Finally, a life-cycle costing (LCC) is carried out, considering all the costs incurred during the lifetime. The LCA results revealed that air pollution and gaseous emissions from electricity consumption have the most significant environmental impacts in all scenarios and all categories. The combined utilization of the UF and RO technologies in the secondary and tertiary treatment processes reduces the health damage caused by microbial diseases, which contributes significantly to reducing overall environmental damage.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Huimin Liu ◽  
Qiqiang Li ◽  
Guanguan Li ◽  
Ran Ding

The steel industry is facing problems such as serious environmental pollution and high resource consumption. At the same time, it lacks effective methods to quantify potential environmental impacts. The purpose of this work is to conduct a specific environmental analysis of steelmaking production in steel plants. The ultimate goal is to discover the main pollution of steelmaking and identify potential options for improving the environment. This paper uses life cycle assessment method to carry out inventory and quantitative analysis on the environmental impact of steelmaking system. Through analysis, the hazards are divided into four major categories, which are human health, climate change, ecosystem quality, and resources. The results show that molten iron has the greatest impact on human health, followed by the greatest impact on resources. The impact of scrap steel on human health ranks third. Molten iron is a key process that affects human health, climate change, ecosystems quality, and resources. In addition, processes such as fuels, working fluids, and auxiliary materials also cause certain environmental damage, accounting for a relatively small proportion. Optimizing the utilization of scrap steel and molten iron resources and improving the utilization efficiency of resources and energy are helpful to reduce the environmental hazards of steelmaking system.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245981
Author(s):  
Lei Deng ◽  
Lei Chen ◽  
Jingjie Zhao ◽  
Ruimei Wang

Agricultural modernization and intensification have been regarded as a significant way to support agricultural development and improve farm income in China. Agricultural cooperatives have played an important role in promoting the modernization and intensification of Chinese agricultural sector. Given the increasing concerns about environmental harm, however, it still remains unclear whether and the extent to which agricultural cooperatives contributes to reducing environmental impacts of agricultural production. Hence, this study performed an environmental evaluation using life cycle assessment for three different organization forms of grape production in Changli County, Hebei Province, China: smallholder farmers, farmer-owned cooperatives and investor-owned firm-led cooperatives. Then the results of life cycle assessment were monetarized and cost benefit analysis was used to evaluate the economic performance of these three organization forms of grape production. The results demonstrate that investor-owned firm-led cooperatives present an overall improvement in environmental and economic performance with the lowest weighted environmental index (integrating all impact categories into a single score), the highest net profit and the highest total net benefit. The results also show a difference in potential improvement in environmental impacts and economic returns between cooperatives and smallholder farmers. Additionally, the production and application of organic and chemical fertilizer and pesticide have been identified as major contributors to total environmental damage.


Sign in / Sign up

Export Citation Format

Share Document