scholarly journals Non-Isothermal Spontaneous Imbibition Process Including Condensation Effects and Variable Surface Tension

Author(s):  
Bautista Oscar ◽  
Sanchez Salvador ◽  
Mendez Federico ◽  
Bautista Eric ◽  
Arcos Carlos
Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1072
Author(s):  
Khaled S. AlQdah ◽  
Naseer M. Khan ◽  
Habib Ben Bacha ◽  
Jae-Dong Chung ◽  
Nehad Ali Shah

The flow of nanofluids is very important in industrial refrigeration systems. The operation of nuclear reactors and the cooling of the entire installation to improve safety and economics are entirely dependent on the application of nanofluids in water. Therefore, a model of Maxwell’s dusty nanofluid with temperature-dependent viscosity, surface suction and variable surface tension under the action of solar radiation is established. The basic equations of momentum and temperature of the dust and liquid phases are solved numerically using the MATLAB bvp4c scheme. In the current evaluation, taking into account variable surface tension and varying viscosity, the effect of dust particles is studied by immersing dust particles in a nanofluid. Qualitative and quantitative discussions are provided to focus on the effect of physical parameters on mass and heat transfer. The propagation results show that this mixing effect can significantly increase the thermal conductivity of nanofluids. With small changes in the surface tension parameters, a stronger drop in the temperature distribution is observed. The suction can significantly reduce the temperature distribution of the liquid and dust phases. The stretchability of the sheet is more conducive to temperature rise. The tables are used to explain how physical parameters affect the Nusselt number and mass transfer. The increased interaction of the liquid with nanoparticles or dust particles is intended to improve the Nusselt number. This model contains features that have not been previously studied, which stimulates demand for this model among all walks of life now and in the future.


Sign in / Sign up

Export Citation Format

Share Document