scholarly journals Network Pharmacology and Traditional Chinese Medicine

10.5772/53868 ◽  
2012 ◽  
Author(s):  
Qihe Xu ◽  
Fan Qu ◽  
Olavi Pelkone
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Shuhan Zhou ◽  
Yanjun Duan ◽  
Yu Deng ◽  
Miao Wang ◽  
Chaoqun Huang ◽  
...  

Chronic gastritis (CG) places a considerable burden on the healthcare system worldwide. Traditional Chinese Medicine (TCM) formulas characterized by multicompounds and multitargets have been acknowledged with striking effects in the treatment of CG in China’s history. Nevertheless, their accurate mechanisms of action are still ambiguous. In this study, we analyzed the effective compounds, potential targets, and related biological pathway of Lianpu Drink (LPD), a TCM formula which has been reported to have a therapeutic effect on CG, by contrasting a “compound-target-disease” network. According to the results, 92 compounds and 5762 putative targets of LPD were screened; among them, 8 compounds derived from different herbs in LPD and 30 common targets related to LPD and CG were selected as candidate compounds and precision targets, respectively. Meanwhile, the predicted common targets were verified by Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway analysis and pharmacological experiments. The results demonstrated that quercetin, ephedrine, trigonelline, crocetin, and β-sitosterol were major effective compounds of LPD responsible for the CG treatment by inhibiting the activation of the JAK 2-STAT 3 signaling pathway to reduce the expressions of cyclin D1 and Bcl-2 proteins. The study provides evidence for the mechanism of understanding of LPD for the treatment of CG.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Wenchao Dan ◽  
Jinlei Liu ◽  
Xinyuan Guo ◽  
Boran Zhang ◽  
Yi Qu ◽  
...  

Background and Aim. Antineoplastic drug-induced cardiotoxicity (ADIC) becomes the second leading cause of death for tumor survivors after tumor recurrence and metastasis, and there may be great room for development in the future of traditional Chinese medicine (TCM). However, the theory of anticardiotoxicity of TCM has not yet formed a system. This study aimed to explore the material basis and the rule of TCM against ADIC based on network pharmacology and data mining. Methods. The targets of antineoplastic drugs with cardiotoxicity were obtained from the National Center for Biotechnology Information (NCBI) database, China national knowledge infrastructure (CNKI) database, and Swiss Target Prediction platform. Then, the cardiotoxicity-related targets were derived from the Gene Cards, Disgenet, OMIM, and DrugBank databases, as well as the drug of current clinical guidelines. The targets both in these two sets were regarded as potential targets to alleviate ADIC. Then, candidate compounds and herbs were matched via Traditional Chinese Medicine Systems Pharmacology (TCMSP) platform. Cytoscape3.7.1 was used to set up the target-compound-herb network. Molecular docking between core targets and compounds was performed with AutodockVina1.1.2. The rules of herbs were summarized by analyzing their property, flavor, and channel tropism. Results. Twenty-one potential targets, 332 candidate compounds, and 400 kinds of herbs were obtained. Five core targets including potassium voltage-gated channel subfamily H member 2 (KCNH2), cyclin-dependent kinase 1 (CDK1), matrix metalloproteinase 2 (MMP2), mitogen-activated protein kinase1 (MAPK1), and tumor protein p53 (TP53) and 29 core compounds (beta-sitosterol, quercetin, kaempferol, etc.) were collected. Five core herbs (Yanhusuo, Gouteng, Huangbai, Lianqiao, and Gancao) were identified. Also, the TCM against ADIC were mainly bitter and acrid in taste, warm in property, and distributed to the liver and lung meridians. Conclusion. TCM against ADIC has great potential. Our study provides a new method and ideas for clinical applications of integrated Chinese and western medicine in treating ADIC.


2020 ◽  
Vol 2020 ◽  
pp. 1-23
Author(s):  
Liping Sun ◽  
Dandan Wang ◽  
Yan Xu ◽  
Wenxiu Qi ◽  
Yanbo Wang

Pneumonia is a serious global health problem and the leading cause of mortality in children. Antibiotics are the main treatment for bacterial pneumonia, but there are serious drug resistance problems. Traditional Chinese medicine (TCM) has been used to treat diseases for thousands of years and has a unique theory. This article takes the treatment of pneumonia with Ephedra sinica as a representative hot medicine and Scutellariae Radix as a representative cold medicine as an example. We explore and explain the theory of treating the same disease with different TCM treatments. Using transcriptomics and network pharmacology methods, GO, KEGG enrichment, and PPI network construction were carried out, demonstrating that Ephedra sinica plays a therapeutic role through the NF-κB and apoptosis signaling pathways targeting PLAU, CD40LG, BLC2L1, CASP7, and CXCL8. The targets of Scutellariae Radix through the IL-17 signaling pathway are MMP9, CXCL8, and MAPK14. Molecular docking technology was also used to verify the results. In short, our results provide evidence for the theory of treating the same disease with different treatments, and we also discuss future directions for traditional Chinese medicine.


2020 ◽  
Vol 11 ◽  
Author(s):  
Mingjun Chen ◽  
Yuxuan Ding ◽  
Zhanqi Tong

Background: Radix Sophorae flavescentis (Kushen), a Chinese herb, is widely used in the treatment of ulcerative colitis (UC) with damp-heat accumulation syndrome (DHAS) according to traditional Chinese medicine (TCM) theory.Objective: The aim of this study was to illuminate the clinical efficacy and potential mechanisms of Kushen-based TCM formulations in the treatment of UC with DHAS.Materials and Methods: A systematic literature search was performed in the PubMed, EMBASE, Chinese Biomedical Literature database, China National Knowledge Infrastructure database, Chongqing VIP Information database, and Wanfang database for articles published between January 2000 and July 2020 on randomized controlled trials (RCTs) that used Kushen-based TCM formulations in the treatment of UC with DHAS. A network pharmacology approach was conducted to detect the potential pathways of Kushen against UC with DHAS.Results: Eight RCTs with a total of 983 subjects were included in the meta-analysis. Compared with the control subjects (5-aminosalicylic acid therapy), those who received Kushen-based TCM formulations for the treatment of UC showed a significantly higher clinical remission rate (RR = 1.20, 95% CI: [1.04, 1.38], p = 0.02) and lower incidence of adverse events (RR = 0.63, 95% CI [0.39, 1.01], p = 0.06). A component-target-pathway network was constructed, indicating five main components (quercetin, luteolin, matrine, formononetin, and phaseolin), three major targets (Interleukin-6, Myc proto-oncogene protein, and G1/S-specific cyclin-D1) and one key potential therapeutic pathway (PI3K-Akt signaling) of Kushen against UC with DHAS.Conclusion: Kushen-based TCM formulations provide good efficacy and possess great potential in the treatment of UC. Large-scale and high-quality clinical trials and experimental verification should be considered for further confirmation of the efficacy of Kushen-based formulations.


2020 ◽  
Vol 2020 ◽  
pp. 1-7 ◽  
Author(s):  
Zhuchen Zhou ◽  
Bing Chen ◽  
Simiao Chen ◽  
Minqiu Lin ◽  
Ying Chen ◽  
...  

Human diseases, especially infectious ones, have been evolving constantly. However, their treatment strategies are not developing quickly. Some diseases are caused by a variety of factors with very complex pathologies, and the use of a single drug cannot solve these problems. Traditional Chinese Medicine (TCM) medication is a unique treatment method in China. TCM formulae contain multiple herbs with multitarget, multichannel, and multilink characteristics. In recent years, with the flourishing development of network pharmacology, a new method for searching therapeutic drugs has emerged. The multitarget action in network pharmacology is consistent with the complex mechanisms of disease and drug action. Using network pharmacology to understand TCM is an emerging trend.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Jiayan Wu ◽  
Shengkun Hong ◽  
Xiankuan Xie ◽  
Wangmi Liu

Objective. Dipsaci Radix (DR) has been used to treat fracture and osteoporosis. Recent reports have shown that myeloid cells from bone marrow can promote the proliferation of lung cancer. However, the action and mechanism of DR has not been well defined in lung cancer. The aim of the present study was to define molecular mechanisms of DR as a potential therapeutic approach to treat lung cancer. Methods. Active compounds of DR with oral bioavailability ≥30% and drug-likeness index ≥0.18 were obtained from the traditional Chinese medicine systems pharmacology database and analysis platform. The potential target genes of the active compounds and bone were identified by PharmMapper and GeneCards, respectively. The compound-target network and protein-protein interaction network were built by Cytoscape software and Search Tool for the Retrieval of Interacting Genes webserver, respectively. GO analysis and pathway enrichment analysis were performed using R software. Results. Our study demonstrated that DR had 6 active compounds, including gentisin, sitosterol, Sylvestroside III, 3,5-Di-O-caffeoylquinic acid, cauloside A, and japonine. There were 254 target genes related to these active compounds as well as to bone. SRC, AKT1, and GRB2 were the top 3 hub genes. Metabolisms and signaling pathways associated with these hub genes were significantly enriched. Conclusions. This study indicated that DR could exhibit the anti-lung cancer effect by affecting multiple targets and multiple pathways. It reflects the traditional Chinese medicine characterized by multicomponents and multitargets. DR could be considered as a candidate for clinical anticancer therapy by regulating bone physiological functions.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Kunmin Xiao ◽  
Kexin Li ◽  
Sidan Long ◽  
Chenfan Kong ◽  
Shijie Zhu

Breast cancer is one of the most common cancers endangering women’s health all over the world. Traditional Chinese medicine is increasingly recognized as a possible complementary and alternative therapy for breast cancer. Chaihu-Shugan-San is a traditional Chinese medicine prescription, which is extensively used in clinical practice. Its therapeutic effect on breast cancer has attracted extensive attention, but its mechanism of action is still unclear. In this study, we explored the molecular mechanism of Chaihu-Shugan-San in the treatment of breast cancer by network pharmacology. The results showed that 157 active ingredients and 8074 potential drug targets were obtained in the TCMSP database according to the screening conditions. 2384 disease targets were collected in the TTD, OMIM, DrugBank, GeneCards disease database. We applied the Bisogenet plug-in in Cytoscape 3.7.1 to obtain 451 core targets. The biological process of gene ontology (GO) involves the mRNA catabolic process, RNA catabolic process, telomere organization, nucleobase-containing compound catabolic process, heterocycle catabolic process, and so on. In cellular component, cytosolic part, focal adhesion, cell-substrate adherens junction, and cell-substrate junction are highly correlated with breast cancer. In the molecular function category, most proteins were addressed to ubiquitin-like protein ligase binding, protein domain specific binding, and Nop56p-associated pre-rRNA complex. Besides, the results of the KEGG pathway analysis showed that the pathways mainly involved in apoptosis, cell cycle, transcriptional dysregulation, endocrine resistance, and viral infection. In conclusion, the treatment of breast cancer by Chaihu-Shugan-San is the result of multicomponent, multitarget, and multipathway interaction. This study provides a certain theoretical basis for the treatment of breast cancer by Chaihu-Shugan-San and has certain reference value for the development and application of new drugs.


2015 ◽  
Vol 7 (1) ◽  
pp. 3-17 ◽  
Author(s):  
Chang-xiao Liu ◽  
Rui Liu ◽  
Hui-rong Fan ◽  
Xue-feng Xiao ◽  
Xiao-peng Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document