scholarly journals Study on the Mechanism of Lianpu Drink for the Treatment of Chronic Gastritis Based on Network Pharmacology

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Shuhan Zhou ◽  
Yanjun Duan ◽  
Yu Deng ◽  
Miao Wang ◽  
Chaoqun Huang ◽  
...  

Chronic gastritis (CG) places a considerable burden on the healthcare system worldwide. Traditional Chinese Medicine (TCM) formulas characterized by multicompounds and multitargets have been acknowledged with striking effects in the treatment of CG in China’s history. Nevertheless, their accurate mechanisms of action are still ambiguous. In this study, we analyzed the effective compounds, potential targets, and related biological pathway of Lianpu Drink (LPD), a TCM formula which has been reported to have a therapeutic effect on CG, by contrasting a “compound-target-disease” network. According to the results, 92 compounds and 5762 putative targets of LPD were screened; among them, 8 compounds derived from different herbs in LPD and 30 common targets related to LPD and CG were selected as candidate compounds and precision targets, respectively. Meanwhile, the predicted common targets were verified by Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway analysis and pharmacological experiments. The results demonstrated that quercetin, ephedrine, trigonelline, crocetin, and β-sitosterol were major effective compounds of LPD responsible for the CG treatment by inhibiting the activation of the JAK 2-STAT 3 signaling pathway to reduce the expressions of cyclin D1 and Bcl-2 proteins. The study provides evidence for the mechanism of understanding of LPD for the treatment of CG.

2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Wei Hu ◽  
Wanjin Fu ◽  
Xin Wei ◽  
Yang Yang ◽  
Chao Lu ◽  
...  

Traditional Chinese medicine has specific effect on some chronic diseases in clinic, especially in rheumatic diseases.Tripterygium wilfordiiHook (TWH) is a traditional Chinese medicine commonly used in the treatment of rheumatoid arthritis (RA); the unique therapeutic effect has been confirmed by a large number of research papers. TWH has many compounds that lead to its active compounds. However, the potential targets and pharmacological and molecular mechanism of its action treatment of rheumatic diseases are not entirely clear. Therefore, the network pharmacology approach is needed to further study and explore its treatment mechanism. We have successfully set up 10 networks, including four major networks and other networks. Four major networks include rheumatoid arthritis disease network, compound-compound target network of TWH, TWH compound target-rheumatoid arthritis disease network, and TWH-rheumatoid arthritis disease-mechanism network. Other networks consist of RA disease and TWH related targets clusters, biological processes, and pathways network. Our study successfully predicted, explained, and confirmed the TWH of RA disease molecular synergy and found the potential of RA related targets, cluster, biological process, and pathways. This study not only provides prompts to the researcher who explores pharmacological and biological molecular mechanism of TWH applying to RA disease, but also proves a feasible method for discovering potential activated compounds from Chinese herbs.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Diyao Wu ◽  
Xinyou Zhang ◽  
Liping Liu ◽  
Yongkun Guo

Aims. Using both data mining and network pharmacology methods, this paper aims to construct a molecule-target-disease network for medicines used for treating mastitis, mine out targets, and signaling pathways related to mastitis and explore the mechanism of Chinese materia medica (CMM) prescriptions in treating mastitis. Methods. A total of 131 CMM prescriptions for treating mastitis were collected from clinical practice and related literatures. A database of prescriptions for treating mastitis (DPTM) was then constructed. Based on data mining method, Traditional Chinese Medicine Inheritance Support System (TCMISS) was employed to mine out high-frequency CMM and key CMM combinations in DPTM. Subsequently, TCM Systems Pharmacology Database and Analysis Platform (TCMSP) and Traditional Chinese Medicine Information Database (TCM-ID) were searched for the targets of ingredients of high-frequency CMM. Then, Bioinformatics Analysis Tool for Molecular Mechanism of TCM (BATMAN-TCM) was searched for diseases and signaling pathways corresponding to the targets of key CMM combinations. The obtained results were denoted as results 1. In addition, human disease database MalaCards was searched for targets and signaling pathways related to mastitis. The obtained results were denoted as results 2. Results 1 and 2 were compared to obtain targets and signaling pathways included in both results, namely, mastitis-related targets of TCMs and mastitis-related signaling pathways that CMM involves in. Then, the biological functions of these targets and signaling pathways were investigated, on which basis the mechanism of CMM prescriptions in treating mastitis was explored. Results. A total of 12 key TCM combinations were identified. Taraxaci Herba, Glycyrrhizae Radix et Rhizoma, Paeoniae Radix Alba, semen citri reticulatae, etc. were CMM with the highest frequency of use for treating mastitis. The potential targets of these high-frequency CMM in treating mastitis were intercellular adhesion molecule 1 (ICAM-1), interleukin-6 (IL-6), lipopolysaccharide binding protein (LBP), and lactotransferrin. The potential signaling pathways that key CMM combinations may involve in during mastitis treatment were NF-κB signaling pathway, immune system, PI3K/Akt signaling pathway, and TNF signaling pathway. Conclusions. From a perspective of network pharmacology, molecule-target-disease analysis may serve as an entry point for the research of mechanism of CMM. On this basis, we studied the mechanism of CMM prescriptions in treating mastitis by data mining and comparison of results. Our work thus provides a new idea and method for studying the working mechanism of CMM prescriptions.


2019 ◽  
Vol 2019 ◽  
pp. 1-22
Author(s):  
Haojie Yang ◽  
Ying Li ◽  
Sichen Shen ◽  
Dan Gan ◽  
Changpeng Han ◽  
...  

Objective. Ulcerative colitis (UC) is a chronic idiopathic inflammatory bowel disease whose treatment strategies remain unsatisfactory. This study aims to investigate the mechanisms of Quyushengxin formula acting on UC based on network pharmacology. Methods. Ingredients of the main herbs in Quyushengxin formula were retrieved from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. Absorption, distribution, metabolism, and excretion properties of all ingredients were evaluated for screening out candidate bioactive compounds in Quyushengxin formula. Weighted ensemble similarity algorithm was applied for predicting direct targets of bioactive ingredients. Functional enrichment analyses were performed for the targets. In addition, compound-target network, target-disease network, and target-pathway network were established via Cytoscape 3.6.0 software. Results. A total of 41 bioactive compounds in Quyushengxin formula were selected out from the TCMSP database. These bioactive compounds were predicted to target 94 potential proteins by weighted ensemble similarity algorithm. Functional analysis suggested these targets were closely related with inflammatory- and immune-related biological progresses. Furthermore, the results of compound-target network, target-disease network, and target-pathway network indicated that the therapeutic effects of Quyushengxin on UC may be achieved through the synergistic and additive effects. Conclusion. Quyushengxin may act on immune and inflammation-related targets to suppress UC progression in a synergistic and additive manner.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yuefeng Zhang ◽  
Fei Yu ◽  
Jingyou Hao ◽  
Eliphaz Nsabimana ◽  
Yanru Wei ◽  
...  

Stress diarrhea is a major challenge for weaned piglets and restricts pig production efficiency and incurs massive economic losses. A traditional Chinese medicine prescription (QJC) composed of Astragalus propinquus Schischkin (HQ), Zingiber officinale Roscoe (SJ), and Plantago asiatica L. (CQC) has been developed by our laboratory and shows marked anti-stress diarrhea effect. However, the active compounds, potential targets, and mechanism of this effect remain unclear and warrant further investigation. In our study, we verified the bioactive compounds of QJC and relevant mechanisms underlying the anti-stress diarrhea effect through network pharmacology and in vivo experimental studies. After establishing a successful stress-induced diarrhea model, histomorphology of intestinal mucosa was studied, and Quantitative real-time PCR (RT-qPCR) probe was used for the phosphoinositide 3-kinase (PI3K)–Akt signaling pathway to verify the therapeutic effect of QJC on diarrhea. First, using the network pharmacology approach, we identified 35 active components and 130 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in QJC. From among these, we speculated that quercetin, luteolin, kaempferol, scutellarein, and stigmasterol were the main bioactive compounds and assumed that the anti-diarrhea effect of QJC was related to the PI3K–Akt signaling pathway. The RT-qPCR indicated that QJC and its bioactive components increased the expression levels of PI3K and Akt, inhibited the expression of phosphatase and tensin homolog (PTEN), and activated the PI3K–Akt signaling pathway to relieve stress-induced diarrhea. Furthermore, we found that QJC alleviated the pathological condition of small intestine tissue and improved the integrity of the intestinal barrier. Taken together, our study showed that the traditional Chinese medicine QJC, quercetin, luteolin, kaempferol, scutellarein, and stigmasterol alleviated the pathological condition of small intestine tissue and relieved stress-induced diarrhea by increasing the expression levels of PI3K and Akt and inhibiting the expression levels of PTEN.


2020 ◽  
Author(s):  
Ying Li ◽  
Guhang Wei ◽  
Zhenkun Zhuang ◽  
Mingtai Chen ◽  
Changjian Yuan ◽  
...  

Abstract BackgroundCorydalis Rhizoma(CR) showed a high efficacy for coronary heart disease (CHD). However, the interaction between the active ingredients of CR and the targets of CHD has not been unequivocally explained in previous researches. To study the active components and potential targets of Corydalis Rhizoma and to determine the mechanism underlying the exact effect of Corydalis Rhizoma on coronary heart disease, a method of network pharmacology was used.Materials and MethodsThe active components of CR and targets corresponding to each component were scanned out from Traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP), and target genes of CHD were searched on GeneCards database and Online Mendelian Inheritance in Man(OMIM) database. The active components and common targets of CR and CHD were used to build the “CR-CHD” network through Cytoscape (version 3.2.1) software as well as protein-protein interaction(PPI) network on String database. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis was executed by clusterProfiler(version 3.8) and DOSE(version 3.6) package on R platform.Results49 active ingredients and 394 relevant targets of CR and the 7173 CHD-related genes were retrieved. 40 common genes were selected for subsequent analysis. Crucial biological processes and pathways were obtained and analyzed, including DNA-binding transcription activator activity, RNA polymerase II-specific, RNA polymerase II transcription factor binding, kinase regulator activity, ubiquitin-like protein ligase binding, fluid shear stress and atherosclerosis, TNF signaling pathway, apoptosis, MAPK signaling pathway and PI3K-Akt signaling pathway.ConclusionsOverall, CR could alleviate CHD through the mechanisms predicted by network pharmacology, laying the foundation for future development of new drugs from traditional Chinese medicine on CHD.


2021 ◽  
Author(s):  
Xue Bai ◽  
Yibo Tang ◽  
Qiang Li ◽  
Guimin Liu ◽  
Dan Liu ◽  
...  

Abstract Background: Male infertility (MI) affects almost 5% adult men worldwide, and 75% of these cases are unexplained idiopathic. There are limitations in the current treatment due to the unclear mechanism of MI, which highlight the urgent need for a more effective strategy or drug. Traditional Chinese Medicine (TCM) prescriptions have been used to treat MI for thousands of years, but their molecular mechanism is not well defined. Methods: Aiming at revealing the molecular mechanism of TCM prescriptions on MI, a comprehensive strategy integrating data mining, network pharmacology, and molecular docking verification was performed. Firstly, we collected 289 TCM prescriptions for treating MI from National Institute of TCM Constitution and Preventive Medicine for 6 years. Then, Core Chinese Materia Medica (CCMM), the crucial combination of TCM prescriptions, was obtained by the TCM Inheritance Support System from China Academy of Chinese Medical Sciences. Next, the components and targets of CCMM in TCM prescriptions and MI-related targets were collected and analyzed through network pharmacology approach.Results: The results showed that the molecular mechanism of TCM prescriptions for treating MI are regulating hormone, inhibiting apoptosis, oxidant stress and inflammatory. Estrogen signaling pathway, PI3K-Akt signaling pathway, HIF-1 signaling pathway, and TNF signaling pathway are the most important signaling pathways. Molecular docking experiments were used to further validate network pharmacology results. Conclusions: This study not only discovers CCMM and the molecular mechanism of TCM prescriptions for treating MI, but may be helpful for the popularization and application of TCM treatment.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Qiaofeng Li ◽  
Taijin Lan ◽  
Songhua He ◽  
Weiwei Chen ◽  
Xiaolan Li ◽  
...  

Abstract Background Lei-gong-gen formula granule (LFG) is a folk prescription derived from Zhuang nationality, the largest ethnic minority among 56 nationalities in China. It consists of three herbs, namely Eclipta prostrata (L.) L., Smilax glabra Roxb, and Centella asiatica (L.) Urb. It has been widely used as health protection tea for hundreds of years to prevent hypertension in Guangxi Zhuang Autonomous Region. The purpose of this study is to validate the antihypertensive effect of LFG on the spontaneously hypertensive rat (SHR) model, and to further identify the effective components and anti-hypertension mechanism of LFG. Methods The effects of LFG on blood pressure, body weight, and heart rate were investigated in vivo using the SHR model. The levels of NO, ANG II, and ET-1 in the serum were measured, and pathological changes in the heart were examined by H&E staining. The main active components of LFG, their corresponding targets, and hypertension associated pathways were discerned through network pharmacology analysis based on the Traditional Chinese Medicine Systems Pharmacology (TCMSP), Traditional Chinese Medicine Integrated Database (TCMID), and the Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine (BATMAN-TCM). Then the predicted results were further verified by molecular biology experiments such as RT-qPCR and western blot. Additionally, the potential active compounds were predicted by molecular docking technology, and the chemical constituents of LFG were analyzed and identified by UPLC-QTOF/MS technology. Finally, an in vitro assay was performed to investigate the protective effects of potential active compounds against hydrogen peroxide (H2O2) induced oxidative damage in human umbilical vein endothelial cells (HUVEC). Results LFG could effectively reduce blood pressure and increase serum NO content in SHR model. Histological results showed that LFG could ameliorate pathological changes such as cardiac hypertrophy and interstitial inflammation. From network pharmacology analysis, 53 candidate active compounds of LFG were collected, which linked to 765 potential targets, and 828 hypertension associated targets were retrieved, from which 12 overlapped targets both related to candidate active compounds from LFG and hypertension were screened and used as the potential targets of LFG on antihypertensive effect. The molecular biology experiments of the 12 overlapped targets showed that LFG could upregulate the mRNA and protein expressions of NOS3 and proto-oncogene tyrosine-protein kinase SRC (SRC) in the thoracic aorta. Pathway enrichment analysis showed that the PI3K-AKT signaling pathway was closely related to the expression of NOS3 and SRC. Moreover, western blot results showed that LFG significantly increased the protein expression levels of PI3K and phosphorylated AKT in SHR model, suggesting that LFG may active the PI3K-AKT signaling pathway to decrease hypertension. Molecular docking study further supported that p-hydroxybenzoic acid, cedar acid, shikimic acid, salicylic acid, nicotinic acid, linalool, and histidine can be well binding with NOS3, SRC, PI3K, and AKT. UPLC-QTOF/MS analysis confirmed that p-hydroxybenzoic acid, shikimic acid, salicylic acid, and nicotinic acid existed in LFG. Pre-treatment of HUVEC with nicotinic acid could alleviate the effect on cell viability induced by H2O2 and increase the NO level in cell supernatants. Conclusions LFG can reduce the blood pressure in SHR model, which might be attributed to increasing the NO level in serum for promoting vasodilation via upregulating SRC expression level and activating the PI3K-AKT-NOS3 signaling pathway. Nicotinic acid might be the potential compound for LFG antihypertensive effect.


2021 ◽  
Vol 5 (3) ◽  
Author(s):  
Feifei Lei ◽  
Mingjun Zhao ◽  
Haifang Wang ◽  
Chao Pan ◽  
Xiaoya Shi

Objective: To explore the target and mechanism of Astragalus membranaceus, poria, salvia miltiorrhiza and semen leiocarpa in the treatment of heart failure by network pharmacology. Methods: The active components of traditional Chinese medicine and the target of heart failure were screened by multi-platform, and the standard gene was transformed by Uniprot. CytoCasp 3.6.1 was used to draw the network diagram of traditional Chinese medicine - component - target. Go and KEGG analysis were performed by Metascape. Results: A total of 36 predictive target sites of Radix Astragalus, Fuling poria, Salvia miltiorrhiza and Draba nemorosa were screened for treatment of heart failure, mainly involving nerve and factor pathways: ADRB2, ADRA1B and AChE. Cancer pathway: TP53, TNF; Pathways of inflammation: IL1B, PTSG2, PTSG1; Sex hormone pathway: ESR1, AR, PGR; Others: SCN5A, HIF1A, etc. The results of GO and KEGG enrichment suggested that the treatment of heart failure with the top four drugs involved cancer pathway, calcium signaling pathway, HIF-1 signaling pathway, and involved in blood circulation, cell proliferation and other processes. Conclusion: This study combines the pharmacological studies of Chinese medicine and western medicine to reveal the mechanism of multi-target and multi-channel regulation of body balance in Chinese medicine treatment.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yingyin Zhu ◽  
Wanling Zhong ◽  
Jing Peng ◽  
Huichao Wu ◽  
Shouying Du

Purpose: The external preparation of the Tibetan medicine formula, Baimai ointment (BMO), has great therapeutic effects on osteoarthritis (OA). However, its molecular mechanism remains almost elusive. Here, a comprehensive strategy combining network pharmacology and molecular docking with pharmacological experiments was adopted to reveal the molecular mechanism of BMO against OA.Methods: The traditional Chinese medicine for systems pharmacology (TCMSP) database and analysis platform, traditional Chinese medicine integrated database (TCMID), GeneCards database, and DisGeNET database were used to screen the active components and targets of BMO in treating OA. A component–target (C-T) network was built with the help of Cytoscape, and the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment through STRING. Autodock Tools which was used to dock the key components and key target proteins was analyzed. Animal experiments were performed to verify the key targets of BMO. Hematoxylin–eosin and toluidine blue staining were used to observe the pathology of joints. Protein expression was determined using enzyme-linked immunosorbent assay.Results: Bioactive compounds and targets of BMO and OA were screened. The network analysis revealed that 17-β-estradiol, curcumin, licochalone A, quercetin, and glycyrrhizic acid were the candidate key components, and IL6, tumor necrosis factor (TNF), MAPK1, VEGFA, CXCL8, and IL1B were the candidate key targets in treating OA. The KEGG indicated that the TNF signaling pathway, NF-κB signaling pathway, and HIF-1 signaling pathway were the potential pathways. Molecular docking implied a strong combination between key components and key targets. The pathology and animal experiments showed BMO had great effects on OA via regulating IL6, TNF, MAPK1, VEGFA, CXCL8, and IL1B targets. These findings were consistent with the results obtained from the network pharmacology approach.Conclusion: This study preliminarily illustrated the candidate key components, key targets, and potential pathways of BMO against OA. It also provided a promising method to study the Tibetan medicine formula or external preparations.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Chunli Piao ◽  
Qi Zhang ◽  
De Jin ◽  
Li Wang ◽  
Cheng Tang ◽  
...  

Diabetic nephropathy (DN) is one of the most common complications of diabetes mellitus. Owing to its complicated pathogenesis, no satisfactory treatment strategies for DN are available. Milkvetch Root is a common traditional Chinese medicine (TCM) and has been extensively used to treat DN in clinical practice in China for many years. However, due to the complexity of botanical ingredients, the exact pharmacological mechanism of Milkvetch Root in treating DN has not been completely elucidated. The aim of this study was to explore the active components and potential mechanism of Milkvetch Root by using a systems pharmacology approach. First, the components and targets of Milkvetch Root were analyzed by using the Traditional Chinese Medicine Systems Pharmacology database. We found the common targets of Milkvetch Root and DN constructed a protein-protein interaction (PPI) network using STRING and screened the key targets via topological analysis. Enrichment of Gene Ontology (GO) pathways and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were analyzed. Subsequently, major hubs were identified and imported to the Database for Annotation, Visualization and Integrated Discovery for pathway enrichment analysis. The binding activity and targets of the active components of Milkvetch Root were verified by using the molecular docking software SYBYL. Finally, we found 20 active components in Milkvetch Root. Moreover, the enrichment analysis of GO and KEGG pathways suggested that AGE-RAGE signaling pathway, HIF-1 signaling pathway, PI3K-Akt signaling pathway, and TNF signaling pathway might be the key pathways for the treatment of DN; more importantly, 10 putative targets of Milkvetch Root (AKT1, VEGFA, IL-6, PPARG, CCL2, NOS3, SERPINE1, CRP, ICAM1, and SLC2A) were identified to be of great significance in regulating these biological processes and pathways. This study provides an important scientific basis for further elucidating the mechanism of Milkvetch Root in treating DN.


Sign in / Sign up

Export Citation Format

Share Document