scholarly journals Thruster Modeling and Controller Design for Unmanned Underwater Vehicles (UUVs)

10.5772/6705 ◽  
2009 ◽  
Author(s):  
Jinhyun Kim
2021 ◽  
Vol 18 (1) ◽  
pp. 172988142098674
Author(s):  
Zheping Yan ◽  
Da Xu ◽  
Tao Chen ◽  
Jiajia Zhou

Formation control is one of the essential problems in multi-unmanned underwater vehicle (UUV) coordination. In this article, a practically oriented UUV formation control structure and method are proposed for the problem of large communication in leader–follower approach. To solve the problem of large communication in multi-UUVs, local sensing means of acoustic positioning is used to provide the real relative distance and angle information for the follower UUV. So, only a small amount of state information of the leader UUV needs to be sent to the follower UUV by acoustic communication. Then, the formation control structure in absence of follower position information is proposed. In this control structure, only the relative distance and angle, as well as velocity and heading of the leader UUV, are used for the formation controller design of the follower UUV. Backstepping and Lyapunov methods are used to design the formation controller without position information of the follower UUV. Two formation configurations of rectangle and triangle with five UUVs are simulated to verify the effectiveness of the method proposed. The simulation results show that the follower UUV can successfully constitute and maintain the desired formation by controlling each real relative distance and angle.


2019 ◽  
Vol 27 (1) ◽  
pp. 332-345 ◽  
Author(s):  
Charita Darshana Makavita ◽  
Shantha Gamini Jayasinghe ◽  
Hung Duc Nguyen ◽  
Dev Ranmuthugala

Author(s):  
Robert M. Koch

Abstract The present work describes an integrated, two-phase computer-based method for fabricating marine propulsors using stereolithography. This new methodology seamlessly integrates stereolithography rapid prototyping techniques with the hydrodynamic design, structural design, and prototype testing of advanced marine propulsors in order to greatly increase the design process efficiency and reduce development time. Its use as applied to the design, fabrication, and testing of advanced propulsor prototypes for small weapon’s-scale undersea vehicles (e.g., Unmanned Underwater Vehicles (UUVs), lightweight and heavyweight torpedoes, etc.) is described in order to demonstrate specific strengths of the new method.


Author(s):  
Matthias Golz ◽  
Florin Boeck ◽  
Sebastian Ritz ◽  
Gerd Holbach

The efforts to discover the world’s oceans — even in extremely deep-sea environments — have grown more and more in the past years. In this context, unmanned underwater vehicles play a central role. Underwater systems that are not tethered need to provide an apparatus to ensure a safe return to the surface. Therefore, positive buoyancy is required and can be achieved by either losing weight or expanding volume. A conservative method is the dropping of ballast weight. However, nowadays this method is not appropriate due to the environmental impact. This paper presents a ballast system for an automated ascent of a deep-sea seabed station in up to 6000 m depth. The ballast system uses a DC motor driven modified hydraulic pump and a compressed air auxiliary system inside a pressure vessel. With regard to the environmental contamination in case of a leakage, only water is used as ballast fluid. The modification of an ordinary oil-hydraulic radial piston pump and the set-up of the ballast system is introduced. Results from sea trials in the Atlantic Ocean are presented to verify the functionality of the ballast system.


Sign in / Sign up

Export Citation Format

Share Document