scholarly journals Role of Gut Microbiota in Bile-Acid Metabolism

2021 ◽  
Author(s):  
Yuji Naito ◽  
Tomohisa Takagi ◽  
Ryo Inoue

The role of the gut microbiota in modifying the pathophysiology of various diseases, including neurodegenerative diseases, is increasingly becoming clear. Bile acids have been shown to be endogenous factors that affect gut microbiota, and bile-acid metabolites directly or indirectly affect host physiology and pathophysiology. The development of metagenomic analysis for gut microbiota and systematic bile-acid measurement using LC–MS/MS has triggered a breakthrough for research in this field. Clinically, an inhibitor of the ileal bile-acid transporter (Elobixibat) was used as a therapeutic agent for chronic constipation, which also paved the way for progress in bile-acid signal research. Additionally, this review emphasizes the importance of gut microbiota-bile acid-receptor signals when considering nutritional approaches to promote healthy longevity.

2017 ◽  
Vol 16 ◽  
pp. S21-S26 ◽  
Author(s):  
Oscar Ramírez-Pérez ◽  
Vania Cruz-Ramón ◽  
Paulina Chinchilla-López ◽  
Nahum Méndez-Sánchez

2021 ◽  
Vol 22 (19) ◽  
pp. 10858
Author(s):  
Chao Yang ◽  
Min Wan ◽  
Dengfeng Xu ◽  
Da Pan ◽  
Hui Xia ◽  
...  

Non-alcoholic steatohepatitis (NASH) is gradually becoming one of the most common and health-endangering diseases; therefore, it is very important to prevent the occurrence of NASH and prevent simple non-alcoholic fatty liver (NAFL) from further developing into NASH. We fed mice a high-fat diet (HFD, 60% fat) for 14 weeks to induce NAFL and then fed different doses of flaxseed powder (low (10%), middle (20%), and high (30%)) to the mice for 28 weeks. After the animal experiment, we analyzed fecal bile acid (BA) profiles of the HFD mice, flaxseed-fed (FLA-fed) mice, and control mice with a normal diet (10% fat) using a targeted metabolomics approach, and we analyzed the gut microbiota at the same time. We also investigated the mechanistic role of BAs in NASH and identified whether the altered BAs strongly bind to colonic FXR or TGR5. In the present study, we found that 28-week FLA treatment notably alleviated NASH development in NAFL model mice fed with an HFD, and the beneficial effects may be attributed to the regulation of and improvement in the gut flora- and microbiota-related BAs, which then activate the intestinal FXR-FGF15 and TGR5-NF-κB pathways. Our data indicate that FLA might be a promising functional food for preventing NASH through regulating microbiomes and BAs.


2021 ◽  
Author(s):  
Ming-zhi Zhu ◽  
Fang Zhou ◽  
Jian Ouyang ◽  
Qi-ye Wang ◽  
Yi-long Li ◽  
...  

Combined use of epigallocatechin-3-gallate (EGCG) and caffeine in low doses exhibits marked anti-obesity synergy. The synergistic effect may be attributed to regulation of gut microbiota and BA metabolism.


Author(s):  
Sik Yu So ◽  
Qinglong Wu ◽  
Kin Sum Leung ◽  
Zuzanna Maria Kundi ◽  
Tor C Savidge ◽  
...  

Emerging evidence links dietary fiber with altered gut microbiota composition and bile acid signaling in maintaining metabolic health. Yeast β-glucan (Y-BG) is a dietary supplement known for its immunomodulatory effect, yet its impact on the gut microbiota and bile acid composition remains unclear. This study investigated whether dietary forms of Y-BG modulate these gut-derived signals. We performed 4-week dietary supplementation in healthy mice to evaluate effects of different fiber composition (soluble vs particulate Y-BG) and dose (0.1 vs. 2%). We found that 2% particulate Y-BG induced robust gut microbiota community shifts with elevated liver Cyp7a1 mRNA abundance and bile acid synthesis. These diet-induced responses were notably different when compared to the prebiotic inulin, and included a marked reduction in fecal Bilophila abundance which we demonstrated as translatable to obesity in population-scale American Gut and TwinsUK clinical cohorts. This prompted us to test whether 2% Y-BG maintained metabolic health in mice fed 60% HFD over 13 weeks. Y-BG consistently altered the gut microbiota composition and reduced Bilophila abundance, with trends observed in improvement of metabolic phenotype. Notably, Y-BG improved insulin sensitization and this was associated with enhanced ileal Glpr1r mRNA accumulation and reduced Bilophila abundance. Collectively, our results demonstrate that Y-BG modulates gut microbiota community composition and bile acid signaling, but the dietary regime needs to be optimized to facilitate clinical improvement in metabolic phenotype in an aggressive high-fat diet animal model.


2021 ◽  
Vol 35 (5) ◽  
Author(s):  
Jing Li ◽  
Jun Song ◽  
Baoxiang Yan ◽  
Heidi L. Weiss ◽  
L. Todd Weiss ◽  
...  

2019 ◽  
Vol 64 (1) ◽  
pp. 1900789 ◽  
Author(s):  
Yang Zhang ◽  
Gerd Bobe ◽  
Johana S. Revel ◽  
Richard R. Rodrigues ◽  
Thomas J. Sharpton ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Caihua Wang ◽  
Chunpeng Zhu ◽  
Liming Shao ◽  
Jun Ye ◽  
Yimin Shen ◽  
...  

Nonalcoholic fatty liver disease (NAFLD) is a major health threat around the world and is characterized by dysbiosis. Primary bile acids are synthesized in the liver and converted into secondary bile acids by gut microbiota. Recent studies support the role of bile acids in modulating dysbiosis and NAFLD, while the mechanisms are not well elucidated. Dysbiosis may alter the size and the composition of the bile acid pool, resulting in reduced signaling of bile acid receptors such as farnesoid X receptor (FXR) and Takeda G protein-coupled receptor 5 (TGR5). These receptors are essential in lipid and glucose metabolism, and impaired bile acid signaling may cause NAFLD. Bile acids also reciprocally regulate the gut microbiota directly via antibacterial activity and indirectly via FXR. Therefore, bile acid signaling is closely linked to dysbiosis and NAFLD. During the past decade, stimulation of bile acid receptors with their agonists has been extensively explored for the treatment of NAFLD in both animal models and clinical trials. Early evidence has suggested the potential of bile acid receptor agonists in NAFLD management, but their long-term safety and effectiveness need further clarification.


Sign in / Sign up

Export Citation Format

Share Document