scholarly journals Characterization of Rhizobium and Plant Growth Promoting Rhizobacteria from French Bean Rhizosphere and Their Effect on French Bean Productivity

2021 ◽  
Author(s):  
Saroj Kumar Yadav ◽  
Kiran P. Raverkar

French bean (Phaseolus vulgaris L.) is used profusely by the common people as an alternative diet of protein. The sparse nodulation in French bean mainly may be due to lack of threshold level of specific rhizobial cells in soil at the time of sowing. The isolates streaked on YEMA with BTB changed to yellow color showing the production of acid which is the characteristic of Rhizobium. Utilization of different carbon sources is an efficient tool to characterize the isolates. Plant growth promoting rhizobacteria is the beneficial rhizobacteria inoculation of which increases growth and yield of French bean through different direct and indirect mechanisms. Inoculation of French beans with rhizobial and rhizobacterial isolates found to be improved growth, physiological, quality parameters and grain yield through symbiotic N2-fixation capacity and plant growth promoting abilities. Co-inoculation of rhizobial and rhizobacterial isolates enhanced the growth and grain yield of French bean. These isolates may be used as consortium to improve the growth of French bean, which may reduce the dependency of farmer on chemical fertilizer as well as risk of pollution. In this chapter characterization of Rhizobium and plant growth promoting rhizobacteria and their effect on plant growth has been reviewed.

Author(s):  
D. Sherathia ◽  
R. Dey ◽  
M. Thomas ◽  
T. Dalsania ◽  
K. Savsani ◽  
...  

Plant growth-promoting rhizobacteria (PGPR) thrive in the rhizosphere of plants and play a beneficial role in plant growth, and development along with biocontrol activities. The present study was undertaken with the aim of developing rhizobacterial inoculants for groundnut for enhancement of growth and yield and suppression of major soil-borne fungal diseases caused by Sclerotium rolfsii (stem rot) and Aspergillus niger (collar rot). Out of a total of 154 rhizobacterial isolates obtained from groundnut rhizosphere, 78 isolates were selected on the basis of in vitro antifungal activities against three major soil-borne fungal pathogens of groundnut, i.e. Aspergillus niger, Aspergillus flavus and Sclerotium rolfsii. The selected isolates were further screened for the production of 2,4-Diacetylphloroglucinol (2,4-DAPG) by the gene specific PCR amplification of phlD gene. A total of 11 rhizobacterial isolates were found to have DAPG-producing genes and selected for further studies. Gene specific primers were also used for characterization of the isolates for plant growth-promoting and biocontrol traits. The qualitative and quantitative estimation of the various attributes of the isolates were also carried out. Majority of the isolates showed production of IAA, siderophores and fluorescent pigments. The DAPG-producing rhizobacterial isolates have great potential as bio-inoculants for groundnut crop for suppressing soil-borne fungal pathogens and to enhance growth and yield.


Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 605
Author(s):  
Chesly Kit Kobua ◽  
Ying-Tzy Jou ◽  
Yu-Min Wang

Chemical fertilizer (CF) is necessary for optimal growth and grain production in rice farming. However, the continuous application of synthetic substances has adverse effects on the natural environment. Amending synthetic fertilizer with plant-growth-promoting rhizobacteria (PGPR) is an alternate option to reduce CF usage. In this study, a field trial was undertaken in southern Taiwan. We aimed to investigate the effects of reducing CF, either partially or completely, with PGPR on the vegetative growth, biomass production, and grain yield of rice plants cultivated under alternate wetting and drying (AWD) cultivation. In addition, we aimed to determine an optimal reduction in CF dose when incorporated with PGPR for application in rice cultivation under AWD. The trial consisted of four treatments, namely, 0% CF + 100% PGPR (FP1), 25% CF + 75% PGPR (FP2) 50% CF + 50% PGPR (FP3), and 100% CF + 0% PGPR (CONT). A randomized complete blocked design (RCBD) with three replicates was used. A reduction in CF by 25–50% with the difference compensated by PGPR significantly (p ≤ 0.05) influenced the crops biomass production. This improved the percentage of filled grains (PFG), and the thousand-grain weight (1000-GW) of treated plants by 4–5%. These improvements in growth and yield components eventually increased the grain yield production by 14%. It is concluded that partial replacement of CF with PGPR could be a viable approach to reduce the use of CF in existing rice cultivation systems. Furthermore, the approach has potential as a sustainable technique for rice cultivation.


Sign in / Sign up

Export Citation Format

Share Document