Seed treatment using plant growth promoting rhizobacteria and its effect on growth and yield of tomato (Lycopersicum esculentum Mill.) plants

2019 ◽  
Vol 2 (2) ◽  
2020 ◽  
Vol 4 (1) ◽  
pp. 229-238
Author(s):  
Dayang Rahmanita Simanjuntak ◽  
Halimursyadah Halimursyadah ◽  
Syamsuddin Syamsuddin

Abstrak. Biological seed treatment merupakan salah satu perlakuan benih menggunakan mikroorganisme seperti rizobakteri pemacu pertumbuhan tanaman (RPPT). Penelitian ini bertujuan untuk mengetahui jenis rizobakteri dan kerapatan inokulum yang dapat meningkatkan viabilitas dan vigor benih cabai kadaluarsa. Penelitian ini menggunakan Rancangan Acak Lengkap (RAL) pola faktorial dengan 2 faktor dan 3 ulangan. Faktor pertama adalah jenis rizobakteri (R) terdiri atas lima taraf yaitu R1: Necercia sp; R2:Bacillus polymixa; R3: Actinobacillus suis; R4: Azotobacter sp; R5: Pseudomonas capacia. Faktor kedua adalah kerapatan inokulum rizobakteri terdiri dari tiga taraf yaitu K1: 107 cfu/ml; K2: 108 cfu/ml; K3: 109 cfu/ml. Hasil penelitian ini menunjukkan bahwa perlakuan benih menggunakan rizobakteri jenis Necercia sp dengan kerapatan inokulum 108 cfu/ml nyata meningkatkan vigor benih pada tolok ukur  indeks vigor yaitu 40% dan Pseudomonas capacia dengan kerapatan inokulum 109 cfu/ml juga merupakan kombinasi perlakuan terbaik dalam meningkatkan berat kering kecambah normal yaitu 69,33 mg.Treatment Of Plant Growth Promoting Rhizobacteria (PGPR)With Multiple Levels of Rhizobacteria Inoculum Density On Viability and Vigor Of Expired Red Chilli Seeds (Capsicum annuum L.Abstract. Biological seed treatment is one of the seed treatment using microorganisms such as plant growth-promoting rhizobacteria (PGPR). This study aims to determine the type of rhizobacteria and inoculum density that can increase the viability and vigor of expired chili seeds. This research uses Completely Randomized Design (CRD) factorial pattern with 2 factors and 3 replications. The first factor is the type of rhizobacteria (R) consists of five levels, namely R1: Necercia sp; R2: Bacillus polymixa; R3: Actinobacillus suis; R4: Azotobacter sp; R5: Pseudomonas capacia. The second factor is the density of rhizobacteria inoculum consisting of three levels namely K1: 107 cfu/ml; K2: 108 cfu/ml; K3: 109 cfu/ml. The results of this study showed that the seed treatment using the Necercia sp-type rizobacteria with 108 cfu/ml inoculum density significantly increased the seed vigor on the vigor index benchmark of 40% and Pseudomonas capacia with 109cfu/ml inoculum density was also the best treatment combination in increasing dry weight normal sprout is 69,33 mg. 


Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2065
Author(s):  
Hammad Anwar ◽  
Xiukang Wang ◽  
Azhar Hussain ◽  
Muhammad Rafay ◽  
Maqshoof Ahmad ◽  
...  

Plant growth-promoting rhizobacteria with multiple growth-promoting traits play a significant role in soil to improve soil health, crop growth and yield. Recent research studies have focused on the integration of organic amendments with plant growth-promoting rhizobacteria (PGPR) to enhance soil fertility and reduce the hazardous effects of chemical fertilizers. This study aims to evaluate the integrated application of biochar, compost, fruit and vegetable waste, and Bacillus subtilis (SMBL 1) to soil in sole application and in combined form. The study comprises eight treatments—four treatments without inoculation and four treatments with SMBL 1 inoculation in a completely randomized design (CRD), under factorial settings with four replications. The results indicate that the integrated treatments significantly improved okra growth and yield compared with sole applications. The integration of SMBL 1 with biochar showed significant improvements in plant height, root length, leaf chlorophyll a and b, leaf relative water content, fruit weight, diameter and length by 29, 29, 50, 53.3, 4.3, 44.7 and 40.4%, respectively, compared with control. Similarly, fruit N, P and K contents were improved by 33, 52.7 and 25.6% and Fe and Zn in shoot were 37.1 and 35.6%, respectively, compared with control. The results of this study reveal that the integration of SMBL 1 with organic amendments is an effective approach to the sustainable production of okra.


2021 ◽  
Author(s):  
Rafia Younas ◽  
Shiza Gul ◽  
Rehan Ahmad ◽  
Ali Raza Khan ◽  
Mumtaz Khan ◽  
...  

Global climate change is leading to a series of frequent onset of environmental stresses such as prolonged drought periods, dynamic precipitation patterns, heat stress, and cold stress on plants and commercial crops. The increasing severity of such stresses is not only making agriculture and related economic sector vulnerable but also negatively influences plant diversity patterns. The global temperature of planet Earth has risen to 1.1°C since the last 19th century. An increase in surface temperature leads to an increase in soil temperature which ultimately reduces water content in the soil, thereby, reducing crop growth and yield. Moreover, this situation is becoming more intense for agricultural practices in arid and semi-arid regions. To overcome climatically induced stresses, acclimatization of plant species via bioinoculation with Plant Growth Promoting Rhizobacteria (PGPR) is becoming an effective approach. The PGPR are capable of colonizing rhizosphere (exophytes) as well as plant organs (endophytes), where they trigger an accumulation of osmolytes for osmoregulation or improving gene expression of heat or cold stress proteins, or by signaling the synthesis of phytohormones, metabolites, proteins, and antioxidants to scavenge reactive oxygen species. Thus, PGPR exhibiting multiple plant growth-promoting traits can be employed via bioinoculants to improve the plant’s tolerance against unfavorable stress conditions.


Akta Agrosia ◽  
2020 ◽  
Vol 23 (1) ◽  
pp. 33-37
Author(s):  
Fera Ariska ◽  
Marlin Marlin ◽  
Widodo Widodo

Bawang dayak is the important medicinal plant that need to be developed in cultivation techniques and production. The use of Plant Growth Promoting Rhizobacteria (PGPR) recently known to be effective to increase plant growth and yield. The research aimed to determine the optimal concentration and immersion time of PGPR on the growth and yield of bawang dayak. The experiment was arrange in complete randomized block design (RCBD) consisting of two factors. The first factor is the concentration of PGPR with 4 levels namely K0 = 0 g L-1, K1 = 5 g L-1, K2 = 10 g L-1 and K3 = 15 g L-1.  The second factor is immersion time of seed, namely P1 = 10 minutes, P2 = 20 minutes, P3 = 30 minutes and P4 = 40 minutes.  The results showed that there was an interaction between concentration and immersion time of PGPR giving effect to the number of leaves and the number of tillers. The immersion time of PGPR for 10 minutes with a concentration of 15 g L-1produced the highest number of leaves (58 leaves) and produced the highest number of tillers (27.67 tillers).  The treatment of PGPR concentration or immersion time of PGPR singly did not affect all observed variables of growth and yield of bawang dayak.


Sign in / Sign up

Export Citation Format

Share Document