scholarly journals Characterization of salt-tolerant plant growth-promoting rhizobacteria and the effect on growth and yield of saline-affected rice

PLoS ONE ◽  
2020 ◽  
Vol 15 (9) ◽  
pp. e0238537
Author(s):  
Rakiba Shultana ◽  
Ali Tan Kee Zuan ◽  
Mohd Rafii Yusop ◽  
Halimi Mohd Saud
2019 ◽  
Vol 10 ◽  
Author(s):  
Dilfuza Egamberdieva ◽  
Stephan Wirth ◽  
Sonoko Dorothea Bellingrath-Kimura ◽  
Jitendra Mishra ◽  
Naveen K. Arora

Rhizosphere ◽  
2019 ◽  
Vol 9 ◽  
pp. 10-17 ◽  
Author(s):  
Ahmad Mahmood ◽  
Rio Amaya ◽  
Oğuz Can Turgay ◽  
Ahmet Emre Yaprak ◽  
Takeshi Taniguchi ◽  
...  

Author(s):  
Arti Sharma ◽  
Kamal Dev ◽  
Anuradha Sourirajan ◽  
Madhu Choudhary

Abstract Background Soil salinity has been one of the biggest hurdles in achieving better crop yield and quality. Plant growth-promoting rhizobacteria (PGPR) are the symbiotic heterogeneous bacteria that play an important role in the recycling of plant nutrients through phytostimulation and phytoremediation. In this study, bacterial isolates were isolated from salt-polluted soil of Jhajjar and Panipat districts of Haryana, India. The potential salt-tolerant bacteria were screened for their PGPR activities such as phosphate solubilization, hydrogen cyanide (HCN), indole acetic acid (IAA) and ammonia production. The molecular characterization of potent isolates with salt tolerance and PGPR activity was done by 16S rDNA sequencing. Results Eighteen soil samples from saline soils of Haryana state were screened for salt-tolerant bacteria. The bacterial isolates were analyzed for salt tolerance ranging from 2 to 10%. Thirteen isolates were found salt tolerant at varied salt concentrations. Isolates HB6P2 and HB6J2 showed maximum tolerance to salts at 10% followed by HB4A1, HB4N3 and HB8P1. All the salt-tolerant bacterial isolates showed HCN production with maximum production by HB6J2. Phosphate solubilization was demonstrated by three isolates viz., HB4N3, HB6P2 and HB6J2. IAA production was maximum in HB4A1 (15.89) and HB6P2 (14.01) and least in HB4N3 (8.91). Ammonia production was maximum in HB6P2 (12.3) and least in HB8P1 (6.2). Three isolates HB6J2, HB8P1 and HB4N3 with significant salt tolerance, and PGPR ability were identified through sequencing of amplified 16SrRNA gene and were found to be Bacillus paramycoides, Bacillus amyloliquefaciens and Bacillus pumilus, respectively. Conclusions The salt-tolerant plant growth-promoting rhizobacteria (PGPR) isolated from saline soil can be used to overcome the detrimental effects of salt stress on plants, with beneficial effects of physiological functions of plants such as growth and yield, and overcome disease resistance. Therefore, application of microbial inoculants to alleviate stresses and enhance yield in plants could be a low cost and environmental friendly option for the management of saline soil for better crop productivity.


Author(s):  
D. Sherathia ◽  
R. Dey ◽  
M. Thomas ◽  
T. Dalsania ◽  
K. Savsani ◽  
...  

Plant growth-promoting rhizobacteria (PGPR) thrive in the rhizosphere of plants and play a beneficial role in plant growth, and development along with biocontrol activities. The present study was undertaken with the aim of developing rhizobacterial inoculants for groundnut for enhancement of growth and yield and suppression of major soil-borne fungal diseases caused by Sclerotium rolfsii (stem rot) and Aspergillus niger (collar rot). Out of a total of 154 rhizobacterial isolates obtained from groundnut rhizosphere, 78 isolates were selected on the basis of in vitro antifungal activities against three major soil-borne fungal pathogens of groundnut, i.e. Aspergillus niger, Aspergillus flavus and Sclerotium rolfsii. The selected isolates were further screened for the production of 2,4-Diacetylphloroglucinol (2,4-DAPG) by the gene specific PCR amplification of phlD gene. A total of 11 rhizobacterial isolates were found to have DAPG-producing genes and selected for further studies. Gene specific primers were also used for characterization of the isolates for plant growth-promoting and biocontrol traits. The qualitative and quantitative estimation of the various attributes of the isolates were also carried out. Majority of the isolates showed production of IAA, siderophores and fluorescent pigments. The DAPG-producing rhizobacterial isolates have great potential as bio-inoculants for groundnut crop for suppressing soil-borne fungal pathogens and to enhance growth and yield.


Sign in / Sign up

Export Citation Format

Share Document