Ensemble Machine Learning Algorithms for Prediction and Classification of Medical Images
The employment of machine learning algorithms in disease classification has evolved as a precision medicine for scientific innovation. The geometric growth in various machine learning systems has paved the way for more research in the medical imaging process. This research aims to promote the development of machine learning algorithms for the classification of medical images. Automated classification of medical images is a fascinating application of machine learning and they have the possibility of higher predictability and accuracy. The technological advancement in the processing of medical imaging will help to reduce the complexities of diseases and some existing constraints will be greatly minimized. This research exposes the main ensemble learning techniques as it covers the theoretical background of machine learning, applications, comparison of machine learning and deep learning, ensemble learning with reviews of state-of the art literature, framework, and analysis. The work extends to medical image types, applications, benefits, and operations. We proposed the application of the ensemble machine learning approach in the classification of medical images for better performance and accuracy. The integration of advanced technology in clinical imaging will help in the prompt classification, prediction, early detection, and a better interpretation of medical images, this will, in turn, improves the quality of life and expands the clinical bearing for machine learning applications.