scholarly journals Wooden Facade Renovation and Additional Floor Construction for Suburban Development in Finland

2022 ◽  
Author(s):  
Markku Karjalainen ◽  
Hüseyin Emre Ilgın ◽  
Lauri Metsäranta ◽  
Markku Norvasuo

Finnish urban settlements are in the age of restoration, and the suburbs need improvements in Finland. In this sense, wooden facade renovation and additional floor construction are viable and sustainable solutions for this development in the Finnish context. This chapter focuses on these important applications from the Finnish residents’ perspective as ecologically sound engineering solutions through a survey. In doing so, the challenges of facade renovation, as well as the benefits of additional floor construction, were presented. The main purpose of the survey was to get the opinions of the residents, find out which variables are important, make inferences for the planning and improvement of such areas, and determine what will be emphasized in the sustainable suburban development of the future. Therefore, the results were based on this empirical approach—survey—but further research such as energy analysis, wood-based facade renovation, and additional floor solutions will be done as part of other studies. It is believed that this study will contribute to the use of sustainable materials and decarbonization of buildings as well as zero energy building (nZEB) to overcome the challenges posed by climate change by the diffusion of wood in the renovation of buildings.

2019 ◽  
Vol 111 ◽  
pp. 04004
Author(s):  
Jiale Chai ◽  
Pei Huang ◽  
Yongjun Sun

Net-zero energy building (NZEB) is widely considered as a promising solution to the current energy and environmental problems. The existing NZEBs are designed using the historical weather data (e.g. typical meteorological year-TMY). Nevertheless, due to climate change, the actual weather data during a NZEB’s lifecycle may differ considerably from the historical weather data. Consequently, the designed NZEBs using the historical weather data may not achieve the desired performance in their lifecycles. Therefore, this study investigates the climate change impacts on NZEB’s energy balance in different climate regions, and also evaluates different measures’ effectiveness in mitigating the associated impacts of climate change. In the study, the multi-year future weather data in different climate regions are firstly generated using the morphing method. Then, using the generated future weather data, the energy balance of the NZEBs, designed using the TMY data, are assessed. Next, to mitigate the climate change impacts, different measures are adopted and their effectiveness is evaluated. The study results can improve the understanding of climate change impacts on NZEB’s energy balance in different climate regions. They can also help select proper measures to mitigate the climate change impacts in the associated climate regions.


2021 ◽  
Author(s):  
Markku Karjalainen ◽  
Hüseyin Emre Ilgın ◽  
Marie Yli-Äyhö ◽  
Anu Soikkeli

Increasing the construction of wooden apartment buildings has its place as part of preventing climate change. This chapter aims to explore the possibilities of expanding the construction of wooden apartment buildings on plots owned by the City of Helsinki in the Mellunkylä area by developing a series-produced wooden apartment building concept suitable for complementary construction—The Noppa concept. The sustainability of this approach is considered from the perspective of materials, construction methods, adaptability of the designed spaces, and housing design flexibility. In this study, the Noppa wooden apartment building concept with cross-laminated timber (CLT) elements has been developed varying in its facilities and architectural design features through architectural modeling programs to be used for complementary construction. The research findings are based on a theoretical approach that has not yet been practically tested but is proposed considering existing construction practices that need further investigation. It is believed that this chapter will contribute to the spread of wooden apartments to achieve a low-carbon economy as one of the key tools in tackling climate change problems. Particularly, proposed architectural design solutions will contribute to decarbonization of buildings as well as zero energy building (nZEB) approach.


2019 ◽  
Vol 111 ◽  
pp. 06071
Author(s):  
Anca Bodale ◽  
Tiberiu Catalina ◽  
Sima Cătălin Ionuț

Climate change has become a fundamental concern for scientific researchers, architects and engineers, and requires improving the performance of the sectors responsible for city and building infrastructure. Burning fossil fuels to produce electricity and heat are the biggest cause of climate change and emissions and represent one third of total greenhouse gas emissions. Thus, buildings become responsible for improving the external environment, either by construction phases, rehabilitating process or by maintaining process. In Romania the building sector is the main contributor to gas emission and most of the residential multi-storeys constructions are buildings from the communist period built using standardized projects. In Romania one the main goals are the thermal rehabilitation of buildings and construction of apartments especially in the inner circle of the capital. However, the renovation measures are very basic and do not target actual/future EU legislation that imposes the Nearly Zero Energy Building (NZEB) standard for the buildings. To overcome and to provide an alternative to both correct refurbishment and creation of new apartments the OVER 4 prototype was developed. These prototypes are modules of apartments where multiple bioclimatic strategies were implemented to minimize the energy consumption. Using the Passive House Project Planning (PHPP) the module was 3D created and simulated to reach the optimal architecture for both well-being of residents and the energy balance.


Author(s):  
Maher Shehadi

Global warming and climate change are rising issues during the last couple of decades. With residential and commercial buildings being the largest energy consumers, sources are being depleted at a much faster pace in the recent decades. Recent statistics shows that 14% of humans are active participant to protect the environment with an additional 48% sympathetic but not active. In this chapter, net-zero energy buildings design tools and applications are presented that can help designers in the commercial and residential sectors design their buildings to be net-zero energy buildings. Case studies with benefits and challenges will be presented to illustrate the different designs to achieve a net-zero energy building (NZEB).


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5357
Author(s):  
Shady Attia ◽  
Camille Gobin

Overheating in residential building is a challenging problem that causes thermal discomfort, productivity reduction, and health problems. This paper aims to assess the climate change impact on thermal comfort in a Belgian reference case. The case study represents a nearly zero energy building that operates without active cooling during summer. The study quantifies the impact of climate change on overheating risks using three representative concentration pathway (RCP) trajectories for greenhouse gas concentration adopted by the Intergovernmental Panel on Climate Change (IPCC). Building performance analysis is carried out using a multizone dynamic simulation program EnergyPlus. The results show that bioclimatic and thermal adaptation strategies, including adaptive thermal comfort models, cannot suppress the effect of global warming. By 2050, zero energy buildings will be vulnerable to overheating.


Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3304 ◽  
Author(s):  
Sangmu Bae ◽  
Yujin Nam ◽  
Ivor da Cunha

The zero energy building (ZEB) is being introduced as a new energy policy in the building sector. Accordingly, to realize the ZEB, renewable energy systems that can produce energy are essential. Various hybrid systems are being proposed to develop a more efficient system than individual renewable energy systems, among which tri-generation systems are attracting attention. In this study, in order to find an economic solution of a tri-generation system for the realization of ZEB, the simulation model using the dynamic energy analysis code was constructed and a feasibility study was conducted. Moreover, the conventional design method and the design method for ZEB realization were proposed, and the return on investment (ROI) was calculated according to four local conditions and two design methods. As a result of energy analysis, the energy self-sufficiency (ES) in Seoul, Ulsan, Ottawa and Toronto were calculated as 62%, 65.1%, 57.7%, and 60.2%, respectively. Moreover, results of feasibility analysis compared to a conventional system showed that the payback period of the tri-generation system in South Korea was within 13 years, and Canada was within 10 years.


Energies ◽  
2018 ◽  
Vol 11 (4) ◽  
pp. 857 ◽  
Author(s):  
◽  
◽  
◽  
◽  

Sign in / Sign up

Export Citation Format

Share Document