scholarly journals Adaptation of buildings to climate change through bioclimatic strategies, in Romania.

2019 ◽  
Vol 111 ◽  
pp. 06071
Author(s):  
Anca Bodale ◽  
Tiberiu Catalina ◽  
Sima Cătălin Ionuț

Climate change has become a fundamental concern for scientific researchers, architects and engineers, and requires improving the performance of the sectors responsible for city and building infrastructure. Burning fossil fuels to produce electricity and heat are the biggest cause of climate change and emissions and represent one third of total greenhouse gas emissions. Thus, buildings become responsible for improving the external environment, either by construction phases, rehabilitating process or by maintaining process. In Romania the building sector is the main contributor to gas emission and most of the residential multi-storeys constructions are buildings from the communist period built using standardized projects. In Romania one the main goals are the thermal rehabilitation of buildings and construction of apartments especially in the inner circle of the capital. However, the renovation measures are very basic and do not target actual/future EU legislation that imposes the Nearly Zero Energy Building (NZEB) standard for the buildings. To overcome and to provide an alternative to both correct refurbishment and creation of new apartments the OVER 4 prototype was developed. These prototypes are modules of apartments where multiple bioclimatic strategies were implemented to minimize the energy consumption. Using the Passive House Project Planning (PHPP) the module was 3D created and simulated to reach the optimal architecture for both well-being of residents and the energy balance.

2018 ◽  
Vol 8 (1) ◽  
pp. 211-221
Author(s):  
Negar Aminoroayaei ◽  
Bahram Shahedi

In the current century, a suitable strategy is concerned for optimal consumption of energy, due to limited natural resources and fossil fuels for moving towards sustainable development and environmental protection. Given the rising cost of energy, environmental pollution and the end of fossil fuels, zero-energy buildings became a popular option in today's world. The purpose of this study is to investigate the factors affecting the design of zero-energy buildings, in order to reduce energy consumption and increase productivity, including plan form, climatic characteristics, materials, coverage etc. The present study collects the features of zero-energy building in Isfahan, which is based on the Emberger Climate View in the arid climate, by examining the books and related writings, field observations and using a descriptive method, in the form of qualitative studies. The results of the research showed that some actions are needed to save energy and, in general, less consumption of renewable energy by considering the climate and the use of natural conditions.


Author(s):  
Henry Shue

We now know that anthropogenic emissions of greenhouse gases (GHGs) are interfering with the planet’s climate system in ways that are likely to lead to dangerous threats to human life (not to mention nonhuman life) and that are likely to compromise the fundamental well-being of people who live at a later time. We have not understood this for very long—for most of my life, for example, we were basically clueless about climate. Our recently acquired knowledge means that decisions about climate policy are no longer properly understood as decisions entirely about preferences of ours but also crucially about the vulnerabilities of others—not about the question “How much would we like to spend to slow climate change?” but about “How little are we in decency permitted to spend in light of the difficulties and the risks of difficulties to which we are likely otherwise to expose people, people already living and people yet to live?” For we now realize that the carbon-centered energy regime under which we live is modifying the human habitat, creating a more dangerous world for the living and for posterity. Our technologically primitive energy regime based on setting fire to fossil fuels is storing up, in the planet’s radically altering atmosphere, sources of added threat for people who are vulnerable to us and cannot protect themselves against the consequences of our decisions for the circumstances in which they will have to live—most notably, whichever people inherit the worn-and-torn planet we vacate. As we academics love to note, matters are, of course, complicated. Let’s look at a few of the complications, concentrating on some concerning risk. Mostly, we are talking about risks because, although we know strikingly much more about the planetary climate system than we did a generation ago, much is still unknown and unpredictable. I will offer three comments about risk. The third comment is the crucial one and makes a strong claim about a specific type of risk, with three distinctive features.


Author(s):  
Susan M. Gaines ◽  
Geoffrey Eglinton ◽  
Jürgen Rullkötter

For many of us who studied and came of age in the last two decades of the twentieth century, there was nothing more prosaic, lacking in romance, and less worthy of our scientific curiosity than petroleum. The basic questions about its composition and origin had been answered, and it was no longer one of Nature’s secrets luring us to discovery, but rather the dull stuff of industry and business, money and technology. Some of us even imagined, naively, that we would witness the end of the age of fossil fuels: they were the bane of modern man, the source of pollution, environmental disaster, and climate change that threatened to disrupt ecosystems and civilizations around the entire globe. Finding new reserves, we reasoned, would only forestall the inevitable, or exacerbate the havoc. But when Jürgen joined Germany’s government-funded Institute of Petroleum and Organic Geochemistry in 1975, there was still a sense of mission in finding new reserves. The energy crisis of the early 1970s had created a heightened awareness of the value of fossil fuels and the need for conservation, but the accepted wisdom remained that oil was the key to the future and well-being of civilization. And the chemistry, it seems, was anything but banal—it was, in fact, leading not just to a better success rate in finding new reserves of oil, but also to a new understanding of life that no one had foreseen. Certainly for Geoff and the generations of organic chemists that came before him, the oils that occasionally seeped out of a crack in a rock, or came spouting out of the earth if one drilled a hole in the right place, were as intriguing as the life some said they came from. Liquid from a solid, organic from mineral, black or brown or dark red, it was as if blood were oozing from stone, an enigma that inspired inquiry from scientists long before it found its place among man’s most coveted commodities.


2019 ◽  
Vol 111 ◽  
pp. 04004
Author(s):  
Jiale Chai ◽  
Pei Huang ◽  
Yongjun Sun

Net-zero energy building (NZEB) is widely considered as a promising solution to the current energy and environmental problems. The existing NZEBs are designed using the historical weather data (e.g. typical meteorological year-TMY). Nevertheless, due to climate change, the actual weather data during a NZEB’s lifecycle may differ considerably from the historical weather data. Consequently, the designed NZEBs using the historical weather data may not achieve the desired performance in their lifecycles. Therefore, this study investigates the climate change impacts on NZEB’s energy balance in different climate regions, and also evaluates different measures’ effectiveness in mitigating the associated impacts of climate change. In the study, the multi-year future weather data in different climate regions are firstly generated using the morphing method. Then, using the generated future weather data, the energy balance of the NZEBs, designed using the TMY data, are assessed. Next, to mitigate the climate change impacts, different measures are adopted and their effectiveness is evaluated. The study results can improve the understanding of climate change impacts on NZEB’s energy balance in different climate regions. They can also help select proper measures to mitigate the climate change impacts in the associated climate regions.


2014 ◽  
Vol 587-589 ◽  
pp. 224-227
Author(s):  
Zhi Jun Zhang

A zero-energy building, also known as a zero net energy (ZNE) building, net-zero energy building (NZEB), or net zero building, is a building with zero net energy consumption and zero carbon emissions annually. Buildings that produce a surplus of energy over the year may be called “energy-plus buildings” and buildings that consume slightly more energy than they produce are called “near-zero energy buildings” or “ultra-low energy houses”. Traditional buildings consume 40% of the total fossil fuel energy in the US and European Union and are significant contributors of greenhouse gases. The zero net energy consumption principle is viewed as a means to reduce carbon emissions and reduce dependence on fossil fuels and although zero energy buildings remain uncommon even in developed countries, they are gaining importance and popularity.


2022 ◽  
Author(s):  
Markku Karjalainen ◽  
Hüseyin Emre Ilgın ◽  
Lauri Metsäranta ◽  
Markku Norvasuo

Finnish urban settlements are in the age of restoration, and the suburbs need improvements in Finland. In this sense, wooden facade renovation and additional floor construction are viable and sustainable solutions for this development in the Finnish context. This chapter focuses on these important applications from the Finnish residents’ perspective as ecologically sound engineering solutions through a survey. In doing so, the challenges of facade renovation, as well as the benefits of additional floor construction, were presented. The main purpose of the survey was to get the opinions of the residents, find out which variables are important, make inferences for the planning and improvement of such areas, and determine what will be emphasized in the sustainable suburban development of the future. Therefore, the results were based on this empirical approach—survey—but further research such as energy analysis, wood-based facade renovation, and additional floor solutions will be done as part of other studies. It is believed that this study will contribute to the use of sustainable materials and decarbonization of buildings as well as zero energy building (nZEB) to overcome the challenges posed by climate change by the diffusion of wood in the renovation of buildings.


2019 ◽  
Author(s):  
Ario Bintang Koesalamwardi ◽  
Susy Fatena Rostiyanti

The continuous growth of population in sub-urban areas leads to increasing demand for mid-rise housing. Recent studies found that greenhouse gas emission in Indonesia continues to escalate at an alarming rate, and housing development is considered as one of the greenhouse gas contributors. Zero-Energy Residential Building, a highly energy efficient and low carbon housing design concept, is regarded as the answer for this environmental issue. Application of Zero-Energy Residential Building concept can reach almost zero sites electrical consumption and reduce greenhouse gas emission since this concept utilizes clean and renewable energy sources, e.g. solar cell, to generate electricity independently. However, this design concept has not been implemented widely since the utilization of solar panels, and other energy conservation components are still too expensive. This study is proposed to find out an optimum combination of design parameters that contribute to cost optimization housing design using sequential search algorithm. Comprehensive study literature and experiment using software are applied in this research. Hence, using the parameter combination in designing a mid-rise dense housing and Zero-Energy Building concept can generate optimum life cycle cost performance. As a result, the study concludes that the life cycle cost of optimized mid-rise Zero-Energy Building is better than the conventional mid-rise housing with annual electrical cost saving up to 98 percent.


2021 ◽  
Author(s):  
Markku Karjalainen ◽  
Hüseyin Emre Ilgın ◽  
Marie Yli-Äyhö ◽  
Anu Soikkeli

Increasing the construction of wooden apartment buildings has its place as part of preventing climate change. This chapter aims to explore the possibilities of expanding the construction of wooden apartment buildings on plots owned by the City of Helsinki in the Mellunkylä area by developing a series-produced wooden apartment building concept suitable for complementary construction—The Noppa concept. The sustainability of this approach is considered from the perspective of materials, construction methods, adaptability of the designed spaces, and housing design flexibility. In this study, the Noppa wooden apartment building concept with cross-laminated timber (CLT) elements has been developed varying in its facilities and architectural design features through architectural modeling programs to be used for complementary construction. The research findings are based on a theoretical approach that has not yet been practically tested but is proposed considering existing construction practices that need further investigation. It is believed that this chapter will contribute to the spread of wooden apartments to achieve a low-carbon economy as one of the key tools in tackling climate change problems. Particularly, proposed architectural design solutions will contribute to decarbonization of buildings as well as zero energy building (nZEB) approach.


Sign in / Sign up

Export Citation Format

Share Document