scholarly journals Surface Integrity of Ball Burnished 316L Stainless Steel

2022 ◽  
Author(s):  
Selma Attabi ◽  
Abdelaziz Himour ◽  
Lakhdar Laouar ◽  
Amir Motallebzadeh

316L is a type of austenitic stainless steel that offers a good combination of mechanical properties, corrosion resistance, and biocompatibility. In some industrial applications, it is necessary to proceed to finish treatments to extend the lifetime of the mechanical parts. In the present chapter, ball burnishing treatment is applied to improve the surface integrity of 316L since the performance behavior of parts is directly dependant on the surface properties of the used material. Both surface topography and surface microhardness of 316L after subjection to ball burnishing are studied. The number of burnishing passes is varied by up to five to investigate its effect on the results. Optical profilometer and atomic force microscopy (AFM) were used to analyze the surface roughness and surface topography texture while measurements of microhardness Vickers were proceeded to investigate the changes in surface hardening.

Author(s):  
Bai An ◽  
Takashi Iijima ◽  
Chris San Marchi ◽  
Brian Somerday

Understanding the micromechanisms of hydrogen-assisted fracture in multiphase metals is of great scientific and engineering importance. By using a combination of scanning electron microscopy (SEM), scanning tunneling microscopy (STM), atomic force microscopy (AFM) and magnetic force microscopy (MFM), the micromorphology of fracture surface and microcrack formation in hydrogen-precharged super duplex stainless steel 2507 are characterized from microscale to nanoscale. The results reveal that the fracture surfaces consist of quasi-brittle facets with riverlike patterns at the microscale, which exhibit rough irregular patterns or remarkable quasi-periodic corrugation patterns at the nanoscale that can be correlated with highly localized plastic deformation. The microcracks preferentially initiate and propagate in ferrite phase and are stopped or deflected by the boundaries of the austenite phase. The hydrogen-assisted cracking mechanisms in super duplex stainless steel are discussed according to the experimental results and hydrogen-enhanced localized plasticity theory.


Author(s):  
Lin Zhang ◽  
Bai An ◽  
Takashi Iijima ◽  
Chris San Marchi ◽  
Brian Somerday

The behaviors of hydrogen transport and hydrogen-assisted cracking in hydrogen-precharged SUS304 austenitic stainless steel sheets in a temperature range from 177 to 298 K are investigated by a combined tensile and hydrogen release experiment as well as magnetic force microscopy (MFM) based on atomic force microscopy (AFM). It is observed that the hydrogen embrittlement increases with decreasing temperature, reaches a maximum at around 218 K, and then decreases with further temperature decrease. The hydrogen release rate increases with increasing strain until fracture at room temperature but remains near zero level at and below 218 K except for some small distinct release peaks. The MFM observations reveal that fracture occurs at phase boundaries along slip planes at room temperature and twin boundaries at 218 K. The role of strain-induced martensite in the hydrogen transport and hydrogen embrittlement is discussed.


1996 ◽  
Vol 451 ◽  
Author(s):  
T. J. Mckrell ◽  
J. M. Galligan

ABSTRACTAn electrochemical atomic force microscope (ECAFM) has been employed to observe, in situ, the topographical and electrical changes that occur on 304 stainless steel as a function of an electrical potential. The concurrent acquisition of a polarization curve and topographical data allows direct correlation of variations in the surface roughness with the electrochemical characteristics of the passivation process. Also, the large AFM scan size, employed in this study, allows for the delineation and determination of the interdependence of the surface kinetics at various regions of the surface. Simultaneous measurements of topographical and electrical changes at these regions have established a correspondence of the competing kinetics between the reactions of dissolution and passivation. This provides a way to relate chemical surface reactions to surface topography.


Sign in / Sign up

Export Citation Format

Share Document