scholarly journals Optimization of the Self-Assembly Method for the Production of Psoriatic Skin Substitutes

Cell Culture ◽  
2019 ◽  
Author(s):  
Alexe Grenier ◽  
Isabelle Gendreau ◽  
Roxane Pouliot
2018 ◽  
Vol 9 (3) ◽  
pp. 53 ◽  
Author(s):  
Laurence Cantin-Warren ◽  
Rina Guignard ◽  
Sergio Cortez Ghio ◽  
Danielle Larouche ◽  
François Auger ◽  
...  

There is a high incidence of failure and recurrence for chronic skin wounds following conventional therapies. To promote healing, the use of skin substitutes containing living cells as wound dressings has been proposed. The aim of this study was to produce a scaffold-free cell-based bilayered tissue-engineered skin substitute (TES) containing living fibroblasts and keratinocytes suitable for use as wound dressing, while considering production time, handling effort during the manufacturing process, and stability of the final product. The self-assembly method, which relies on the ability of mesenchymal cells to secrete and organize connective tissue sheet sustaining keratinocyte growth, was used to produce TESs. Three fibroblast-seeding densities were tested to produce tissue sheets. At day 17, keratinocytes were added onto 1 or 3 (reference method) stacked tissue sheets. Four days later, TESs were subjected either to 4, 10, or 17 days of culture at the air–liquid interface (A/L). All resulting TESs were comparable in terms of their histological aspect, protein expression profile and contractile behavior in vitro. However, signs of extracellular matrix (ECM) digestion that progressed over culture time were noted in TESs produced with only one fibroblast-derived tissue sheet. With lower fibroblast density, the ECM of TESs was almost completely digested after 10 days A/L and lost histological integrity after grafting in athymic mice. Increasing the fibroblast seeding density 5 to 10 times solved this problem. We conclude that the proposed method allows for a 25-day production of a living TES, which retains its histological characteristics in vitro for at least two weeks.


1995 ◽  
Vol 171 (2) ◽  
pp. 505-511 ◽  
Author(s):  
Hiromori Tsutsumi ◽  
Shozo Furumoto ◽  
Masayuki Morita ◽  
Yoshiharu Matsuda

2016 ◽  
Vol 153 ◽  
pp. 435-444 ◽  
Author(s):  
Urarika Luesakul ◽  
Seamkwan Komenek ◽  
Songchan Puthong ◽  
Nongnuj Muangsin

2020 ◽  
Vol 2020 ◽  
pp. 1-23 ◽  
Author(s):  
Vincent Roy ◽  
Brice Magne ◽  
Maude Vaillancourt-Audet ◽  
Mathieu Blais ◽  
Stéphane Chabaud ◽  
...  

Cancer research has considerably progressed with the improvement of in vitro study models, helping to understand the key role of the tumor microenvironment in cancer development and progression. Over the last few years, complex 3D human cell culture systems have gained much popularity over in vivo models, as they accurately mimic the tumor microenvironment and allow high-throughput drug screening. Of particular interest, in vitrohuman 3D tissue constructs, produced by the self-assembly method of tissue engineering, have been successfully used to model the tumor microenvironment and now represent a very promising approach to further develop diverse cancer models. In this review, we describe the importance of the tumor microenvironment and present the existing in vitro cancer models generated through the self-assembly method of tissue engineering. Lastly, we highlight the relevance of this approach to mimic various and complex tumors, including basal cell carcinoma, cutaneous neurofibroma, skin melanoma, bladder cancer, and uveal melanoma.


2013 ◽  
Vol 850-851 ◽  
pp. 92-95
Author(s):  
Yong Wan ◽  
Zhong Yu Cai ◽  
Ming Hui Jia ◽  
Chao Li ◽  
Wan Qin Yang

Silica and polystyrene (PS) microspheres assembled on two quite different patterned silicon substrates, cross-like pillar pattern and eye-like pattern, respectively. The results indicated that the surface pattern imposes a predetermined lattice orientation in colloidal crystals (CCs). Other influent factors, such as microsphere size, the altitude of pattern and the concentration of colloidal suspension, may also play an important role on the self-assembly process.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Ingrid Saba ◽  
Weronika Jakubowska ◽  
Stéphane Bolduc ◽  
Stéphane Chabaud

Twenty years ago, Dr. François A. Auger, the founder of the Laboratory of Experimental Organogenesis (LOEX), introduced the self-assembly technique. This innovative technique relies on the ability of dermal fibroblasts to produce and assemble their own extracellular matrix, differing from all other tissue-engineering techniques that use preformed synthetic scaffolds. Nevertheless, the use of the self-assembly technique was limited for a long time due to its main drawbacks: time and cost. Recent scientific breakthroughs have addressed these limitations. New protocol modifications that aim at increasing the rate of extracellular matrix formation have been proposed to reduce the production costs and laboratory handling time of engineered tissues. Moreover, the introduction of vascularization strategies in vitro permits the formation of capillary-like networks within reconstructed tissues. These optimization strategies enable the large-scale production of inexpensive native-like substitutes using the self-assembly technique. These substitutes can be used to reconstruct three-dimensional models free of exogenous materials for clinical and fundamental applications.


Langmuir ◽  
2004 ◽  
Vol 20 (5) ◽  
pp. 1963-1971 ◽  
Author(s):  
Z. F. Li ◽  
M. T. Swihart ◽  
E. Ruckenstein

2016 ◽  
Vol 45 (2) ◽  
pp. 427-438 ◽  
Author(s):  
Maxime Picard-Deland ◽  
Jean Ruel ◽  
Todd Galbraith ◽  
Catherine Tremblay ◽  
Fabien Kawecki ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Stéphane Chabaud ◽  
Stéphane Bolduc

Many pathologies of skin, especially ageing and cancer, involve modifications in the matrix alignment. Such tissue reorganization could have impact on cell behaviour and/or more global biological processes. Tissue engineering provides accurate study model by mimicking the skin and it allows the construction of versatile tridimensional models using human cells. It also avoids the use of animals, which gave sometimes nontranslatable results. Among the various techniques existing, the self-assembly method allows production of a near native skin, free of exogenous material. After cultivating human dermal fibroblasts in the presence of ascorbate during two weeks, a reseeding of these cells takes place after elevation of the resulting stroma on a permeable ring and culture pursued for another two weeks. This protocol induces a clear realignment of matrix fibres and cells parallel to the horizon. The thickness of this stretched reconstructed tissue is reduced compared to the stroma produced by the standard technique. Cell count is also reduced. In conclusion, a new, easy, and inexpensive method to produce aligned tissue free of exogenous material could be used for fundamental research applications in dermatology.


Sign in / Sign up

Export Citation Format

Share Document