scholarly journals Mathematical Modeling and Well-Posedness of Three-Dimensional Shell in Disorders of Human Vascular System

Author(s):  
Vishakha Jadaun ◽  
Nitin Raja Singh
2005 ◽  
Vol 8 ◽  
pp. 803-812 ◽  
Author(s):  
Hao ZHANG ◽  
Hajime NAKAGAWA ◽  
Taisuke ISHIGAKI ◽  
Yasunori MUTO ◽  
Yasuyuki BABA

2021 ◽  
Vol 31 (14) ◽  
Author(s):  
Irina Bashkirtseva ◽  
Tatyana Perevalova ◽  
Lev Ryashko

A problem of the mathematical modeling and analysis of noise-induced transformations of complex oscillatory regimes in hierarchical population systems is considered. As a key example, we use a three-dimensional food chain dynamical model of the interacting prey, predator, and top predator. We perform a comparative study of the impacts of random fluctuations on three key biological parameters of prey growth, predator mortality, and the top predator growth. A detailed investigation of the stochastic excitement, noise-induced transition from order to chaos, and various scenarios of extinction is carried out. Constructive abilities of the semi-analytical method of confidence domains in the analysis of the noise-induced extinction are demonstrated.


Symmetry ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 218 ◽  
Author(s):  
Praveen Kalarickel Ramakrishnan ◽  
Mirco Raffetto

A set of sufficient conditions for the well posedness and the convergence of the finite element approximation of three-dimensional time-harmonic electromagnetic boundary value problems involving non-conducting rotating objects with stationary boundaries or bianisotropic media is provided for the first time to the best of authors’ knowledge. It is shown that it is not difficult to check the validity of these conditions and that they hold true for broad classes of practically important problems which involve rotating or bianisotropic materials. All details of the applications of the theory are provided for electromagnetic problems involving rotating axisymmetric objects.


Angiogenesis ◽  
2020 ◽  
Author(s):  
Willi L. Wagner ◽  
Sonja Föhst ◽  
Jessica Hock ◽  
Yong Ook Kim ◽  
Yury Popov ◽  
...  

Abstract Cirrhosis describes the development of excess fibrous tissue around regenerative nodules in response to chronic liver injury and usually leads to irreversible organ damage and end-stage liver disease. During the development of cirrhosis, the formation of collagenous scar tissue is paralleled by a reorganization and remodeling of the hepatic vascular system. To date, macrovascular remodeling in various cirrhosis models has been examined using three-dimensional (3D) imaging modalities, while microvascular changes have been studied mainly by two-dimensional (2D) light microscopic and electron microscopic imaging. Here, we report on the application of high-resolution 3D synchrotron radiation-based microtomography (SRμCT) for the study of the sinusoidal and capillary blood vessel system in three murine models of advanced parenchymal and biliary hepatic fibrosis. SRμCT facilitates the characterization of microvascular architecture and identifies features of intussusceptive angiogenesis in progressive liver fibrosis in a non-destructive 3D manner.


Sign in / Sign up

Export Citation Format

Share Document