scholarly journals The Translatory Wave Model for Landslides

Author(s):  
Jónas Elíasson ◽  
Þorsteinn Sæmundsson

The Saint-Venant equations are usually the basis of numerical models for landslide flows. They are nonstationary and nonlinear. The theory for translatory waves in a prismatic channel and a funneling channel can be used for landslides using the assumption of either turbulent or laminar flow in the slide. The mathematics of translatory waves traveling over dry land or superimposed on another flow are developed. This results in a new slope factor controlling the flow velocity, together with the Chezy coefficient used in previous applications of the translatory wave theory. Flow times for the slide to reach a given destination, slide depth, and velocity can be calculated using the initial magnitude of the flow in the slide. The instabilities of the wave tail are discussed. Three case studies are presented: a submarine slide that started the Tohoku tsunami in Japan, the Morsárjökull rock avalanche in SE Iceland, and the Móafellshyrna slide in central N Iceland.


1997 ◽  
Vol 36 (8-9) ◽  
pp. 57-63 ◽  
Author(s):  
Homayoun Motiee ◽  
Bernard Chocat ◽  
Olivier Blanpain

This paper presents a model for the hydraulic simulation of a drainage network using the storage concept. This model is easier to use than the complete Barre de Saint Venant equations and gives better results than the usual conceptual models, i.e. the Muskingum model, or than models obtained by the simplification of the Saint Venant equations (kinematic wave model and diffusion wave model).



2021 ◽  
Author(s):  
Ali Abdolali ◽  
Andre van der Westhuysen ◽  
Zaizhong Ma ◽  
Avichal Mehra ◽  
Aron Roland ◽  
...  

AbstractVarious uncertainties exist in a hindcast due to the inabilities of numerical models to resolve all the complicated atmosphere-sea interactions, and the lack of certain ground truth observations. Here, a comprehensive analysis of an atmospheric model performance in hindcast mode (Hurricane Weather and Research Forecasting model—HWRF) and its 40 ensembles during severe events is conducted, evaluating the model accuracy and uncertainty for hurricane track parameters, and wind speed collected along satellite altimeter tracks and at stationary source point observations. Subsequently, the downstream spectral wave model WAVEWATCH III is forced by two sets of wind field data, each includes 40 members. The first ones are randomly extracted from original HWRF simulations and the second ones are based on spread of best track parameters. The atmospheric model spread and wave model error along satellite altimeters tracks and at stationary source point observations are estimated. The study on Hurricane Irma reveals that wind and wave observations during this extreme event are within ensemble spreads. While both Models have wide spreads over areas with landmass, maximum uncertainty in the atmospheric model is at hurricane eye in contrast to the wave model.



2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Zhaowei Qu ◽  
Yan Xing ◽  
Hongyu Hu ◽  
Yuzhou Duan ◽  
Xianmin Song ◽  
...  

The motion characteristics of the leading vehicle and the following vehicles of the traffic flow at the typical urban intersections are qualitatively analyzed through the kinematical equation and the traffic wave theory. Then, the motion characteristic of the whole traffic flow during the dispersion process is also studied. Based on the spatiotemporal model of kinematics in the departure process and traffic wave model in the dispersion process proposed, the change of the leading vehicle of the departure process and the time of the following vehicles reaching to the stable speed as well as the relationship between the green time and the departure vehicle number at the intersection are acquired. Furthermore, according to the qualitative analysis and the quantitative calculation of the departure traffic flow at the signalized intersection, the dispersion characteristic of traffic flow at the signalized intersection was studied and analyzed, which provides reliable theoretical basis for traffic signal setting at the intersection.



Geosciences ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 108
Author(s):  
Jόnas Elíasson ◽  
Þorsteinn Sæmundsson

In 2014, the Varnes classification system for landslides was updated. Complex landslides can still be a problem to classify as the classification does not include the flow type in the hydrodynamical sense. Three examples of Icelandic landslides are presented and later used as case studies in order to demonstrate the methods suggested to analyze the flow. The methods are based on the different physical properties of the flow types of the slides. Three different flow types are presented, named type (i), (ii), and (iii). Types (i) and (ii) do not include turbulent flows and their flow paths are sometimes independent of the velocity. Type (iii) include high velocity flows; they are treated with the translator wave theory, where a new type of a slope factor is used. It allows the slide to stop when the slope has flattened out to the value that corresponds to the stable slope property of the flowing material. The type studies are for a fast slide of this type, also a large slip circle slide that turns into a fast-flowing slide farther down the path and finally a large slide running so fast that it can run for a kilometer on flat land where it stops with a steep front.



2021 ◽  
Author(s):  
Pablo Poulain ◽  
Anne Le Friant ◽  
Rodrigo Pedreros ◽  
Anne Mangeney ◽  
Andrea Filippini ◽  
...  

<p>Since May 2018, Mayotte island has experienced an important seismic activity linked to the on-going sismo-volcanic crisis. The epicenters of the seismic swarms are located between 5 and 15 km east of Petite Terre for the main swarm, and 25 km east of Petite Terre for the secondary swarm. Although variations in the number of earthquakes and their distribution have been observed since the start of the eruption in early July 2018 [Lemoine A.(2020), Cesca et al.(2020)], a continuous seismicity persists and could generate several earthquakes of magnitudes close to M4 widely felt by the population. This recurrent seismicity could weaken the steep submarine slopes of Mayotte, as highlighted by the high resolution bathymetry data collected during the MAYOBS cruise in May 2019 (Feuillet et al.,submitted) and trigger submarine landslides with associated tsunamis.</p><p>To address the hazards associated with such events, we analyzed morphological data to define 8 scenarios of potential submarine slides with volumes ranging from 11,25.10<sup>6</sup> to 800.10<sup>6</sup> m<sup>3</sup> and we simulate the landslide dynamics and generated waves. We use two complementary numerical models: (i) the code HYSEA to simulate the dynamic of the submarine granular flows and the water wave generation, and (ii) the Boussinesq FUNWAVE- TVD model simulate the waves propagation and the inundation on Mayotte. The effect of the time at which the models are coupled is investigated.</p><p>The most impacting submarine slide scenarios are located close to Petite Terre at a shallow depth. They can locally generate a sea surface elevation more than a meter in local areas especially at Petite Terre. The various simulations show that parts of the island are particularly sensitive to the risk of tsunamis. Indeed, some scenarios that does not cause significant coastal flooding still seems to cause significant hazards in these exposed areas. The barrier reef around Mayotte has a prominent role in controlling the wave propagation towards the island and therefore reducing the impact on land. It should be noted that the arrival of tsunamis on the coastline is not necessarily preceded by a retreat from the sea and the waves can reach the coasts of Mayotte very quicky (few minutes).</p><p> </p><p>Cesca, S., Letort, J., Razafindrakoto, H.N.T. et al. Drainage of a deep magma reservoir near Mayotte inferred from seismicity and deformation. Nat. Geosci. <strong>13, </strong>87–93 (2020). https://doi.org/10.1038/s41561-019-0505-5</p><p>Feuillet, N, Jorry, S. J., Crawford, W, Deplus, C. Thinon, I, Jacques, E. Saurel, J.M., Lemoine, A., Paquet, F., Daniel, R., Gaillot, A., Satriano, C., Peltier, A., Aiken, C., Foix, O., Kowalski, P., Laurent, A., Beauducel, F., Grandin, R., Ballu, V., Bernard, P., Donval, J.P., Geli, L., Gomez, J. Guyader, V., Pelleau, P., Rinnert, E., Bertil, D., Lemarchand, A., Van der Woerd, J.et al. (in rev). Birth of a large volcano offshore Mayotte through lithosphere-scale rifting, Nature.</p><p>Anne Lemoine, Pierre Briole, Didier Bertil, Agathe Roullé, Michael Foumelis, Isabelle Thinon, Daniel Raucoules, Marcello de Michele, Pierre Valty, Roser Hoste Colomer, The 2018–2019 seismo-volcanic crisis east of Mayotte, Comoros islands: seismicity and ground deformation markers of an exceptional submarine eruption, Geophysical Journal International, Volume 223, Issue 1, October 2020, Pages 22–44, https://doi.org/10.1093/gji/ggaa273</p>



Author(s):  
Jane McKee Smith ◽  
Spicer Bak ◽  
Tyler Hesser ◽  
Mary A. Bryant ◽  
Chris Massey

An automated Coastal Model Test Bed has been built for the US Army Corps of Engineers Field Research Facility to evaluate coastal numerical models. In October of 2015, the test bed was expanded during a multi-investigator experiment, called BathyDuck, to evaluate two bathymetry sources: traditional survey data and bathymetry generated through the cBathy inversion algorithm using Argus video measurements. Comparisons were made between simulations using the spectral wave model STWAVE with half-hourly cBathy bathymetry and the more temporally sparse surveyed bathymetry. The simulation results using cBathy bathymetry were relatively close to those using the surveyed bathymetry. The largest differences were at the shallowest gauges within 250 m of the coast, where wave model normalized root-mean-square was approximately twice are large using the cBathy bathymetry. The nearshore errors using the cBathy input were greatest during events with wave height greater than 2 m. For this limited application, the Argus cBathy algorithm proved to be a suitable bathymetry input for nearshore wave modeling. cBathy bathymetry was easily incorporated into the modeling test bed and had the advantage of being updated on approximately the same temporal scale as the other model input conditions. cBathy has great potential for modeling applications where traditional surveys are sparse (seasonal or yearly).



Author(s):  
Henrique Coelho ◽  
Zhong Peng ◽  
Dave Sproson ◽  
Jill Bradon

Internal waves in the ocean occur in stably stratified fluids when a water parcel is vertically displaced by some external forcing and is restored by buoyancy forces. A specific case of such internal waves is internal tides and their associated currents. These currents can be significant in areas where internal waves degenerate into nonlinear solitary waves, known as solitons. Solitons are potentially hazardous for offshore engineering constructions, such as oil/gas pipelines and floating platforms. The most efficient mechanism of soliton generation is the tidal energy conversion from barotropic to baroclinic component over large-scale oceanic bottom obstructions (shelf breaks, seamounts, canyons and ridges). In this paper, a methodology is provided to compute diagnostics and prognostics for soliton generation and propagation, including the associated currents. The methodology comprises a diagnostic tool which, through the use of a set of theoretical and empirical formulations, selects areas where solitons are likely to occur. These theoretical and empirical formulations include the computation of the integral body force (1), the linear wave theory to compute the phase speed and the empirical model proposed by (2). After the selection procedure, the tool provides initial and boundary conditions for non-hydrostatic numerical models. The numerical models run in 2D-V configuration (vertical slices) with horizontal and vertical resolutions ranging from 50 to 200 m and 5 to 10 m, respectively. Examples are provided for an open ocean location over the Mascarene Plateau in the Indian Ocean. Validation of diagnostics and prognostics are provided against ADCP and satellite data.



2014 ◽  
Vol 567 ◽  
pp. 724-729 ◽  
Author(s):  
Indra Sati Hamonangan Harahap ◽  
Vo Nguyen Phu Huan

Submarine landslide is the most serious threat on both local and regional scales. Tsunami phenomenon induced by submarine slide has put us on the challenge in understanding from generation mechanism to propagation and coastal inundation and mitigating the risk from it. Submarine slides can trigger tsunamis with high run-up affecting offshore structures, subsea facilities and human lives along the shoreline. Unfortunately, there are no effective numerical models that could simulate simultaneously all stages of generation, propagation and run-up of tsunamis phenomena. This paper presents a comprehensive review on the landslide tsunami phenomenon.



Author(s):  
Dale Kerper ◽  
Christian M. Appendini ◽  
Henrik Kofoed-Hansen ◽  
Ida Bro̸ker

For the determination maximum flood elevations, a number of components contributing to the total water level need to be considered. For instance, astronomical tide, storm surge, relative changes in mean sea level, wave setup, wave runup and wave splash. In this study, numerical models were used to evaluate under which conditions wave setup penetrates into an idealized inlet. A number of idealized inlet/lagoon configurations were tested. A coupled wave-current model was used to assess the static component of the wave setup. A Boussinesq wave model was used to assess the influence of the dynamic oscillating component of the wave setup. This study demonstrates how numerical modeling tools can be effectively used to assess how wave setup develops depending on a specific inlet configuration.



Author(s):  
Hoda El Safty ◽  
Patrick Lynett

Nearshore hydrodynamics are driven by a wide spectrum of motions/scales that vary on the order of O (10) m to O (100) km. These scales have different effects on the dynamics of the nearshore areas, and capturing these effects is essential in accurately modeling the nearshore processes such as: mixing and transport of pollutants, wave steeping and/or wave damping, erosion and deposition of sediments, and infragravity wave propagation. For example, in tidal inlets, waves interact with tidal-currents and bathymetry. The presences of waves alter the kinematics and the dynamics of the tidal-currents such as increasing the bottom friction due to wave bottom boundary layer and changing the vertical profile of the horizontal velocity from the well-known log profile. The tidal-currents affect the wave kinematics and dynamics such as Doppler shift, wave refraction, and wave steeping in opposite currents, wave breaking and infragravity wave propagation. The time and length scales of the current are much larger than those of the waves, and modeling this interaction using a single numerical model is numerically expensive. One approach to overcome this issue is through using multi-scale numerical modeling by coupling two or more numerical models. In literature, spectral wave models have been widely coupled with circulation models to study wave-current interaction. These spectral models can provide accurate predictions for wave height but they don’t provide accurate information about nonlinear wave statistics, i.e. wave skewness and asymmetry, which is a key parameter in sediment transport models. On the other hand, the phase-resolving models are capable of providing this information. In the current study, the large-scale circulation model, Delft3D, is coupled with time-domain Boussinesq-type wave model. The use of time domain wave model in the numerical coupling will improve the prediction of various nearshore processes such as: wave breaking and thus infragravity wave release and propagation, combined vertical velocity structure under external forcings of tidal currents. Such an application will fulfill the community needs for a "spot application tool" where we simulate wave-driven processes in a large domain with fine-resolution.



Sign in / Sign up

Export Citation Format

Share Document