scholarly journals Increasing Yields and Soil Chemical Properties through the Application of Rock Fines in Tropical Soils in the Western Part of Cameroon, Africa

Author(s):  
Samuel Tetsopgang

Local tropical soils were amended with pulverized rock fines such as trachyte, basalt, pyroclastic materials, limestone and gneiss with ± manure in different proportions in Cameroon. And soil textures and chemicals were assessed after harvesting. Cabbage and potatoes as test crops treated with fines of pyroclastic materials and basalts, portrayed highest and lowest productivities, respectively. The early loamy sand texture of controls changes to clay; and clay textures remained unchanged after treatments. This indicates the decrease of sand proportion and gain in clay particles after treatments. The pH of local soils was strongly to slightly acidic (4.8 ≤ pH ≤ 6.5) and rose up to slightly acidic and slightly alkaline affinity (6.6 ≤ pH ≤ 7.2). A significant pH increase from 5.9 to 6.9 was observed on a treated sample with pulverized pyroclastic materials. Organic carbon and Organic matter show parallel oscillated tendencies from controls to treated soils. There is a general increase of Mg and Ca after treatments while Na and K remain constant. Rock fines from trachyte, limestone and basalt as treatments significantly increase phosphorus in soils with contents of 96.0, 51.5 and 50.9 ppm, respectively.

Soil Research ◽  
1997 ◽  
Vol 35 (6) ◽  
pp. 1301 ◽  
Author(s):  
P. W. Moody ◽  
S. A. Yo ◽  
R. L. Aitken

Total organic carbon (TC) in 32 acidic surface (0–10 cm) soils was divided into 3 fractions (C1, C2, and C3) based on oxidisability by different strengths of KMnO4 (33 mM and 167 mM). With the methodology used, ease of oxidation decreased in the order C1>C2>C3. Several fundamental soil chemical properties were also determined, i.e. ECEC, CEC at pH 6·5 (CEC6·5), slope of the charge curve (ΔCEC), pH buffer capacity, (pHBC), P sorption capacity using a single addition index (PSI150), and content of organically complexed Al. All soils had pH (1:5 water) <6·5, and comprised a wide range of soil types and clay contents. Multiple step-up regression indicated that C fractions were significantly (P < 0·05) correlated with ECEC, ΔCEC, CEC6·5, and pHBC. These results reinforce the critical importance of soil organic matter to the fundamental soil chemical properties of predominantly variable charge soils. The intercorrelations between the various oxidisable C fractions made it difficult to elucidate if degree of oxidisability had any bearing on the reactivity of the organic matter. ECEC was primarily correlated with C1, whereas all C fractions had highly significant (P < 0·01) effects on ΔCEC and pHBC. The fraction which was most difficult to oxidise, C3, made a significant (P < 0·01) contribution to CEC6·5 when combined with clay and ECEC in a multiple regression equation. Generally, one or other of the C fractions was better correlated with the fundamental soil chemical properties than TC. This simple empirical fractionation of soil organic C may therefore be a useful tool for assessing the effects of soil management on these properties.


2016 ◽  
Author(s):  
Zhaolian Ye ◽  
Jiashu Liu ◽  
Aijun Gu ◽  
Feifei Feng ◽  
Yuhai Liu ◽  
...  

Abstract. Knowledge on aerosol chemistry in densely populated regions is critical for reduction of air pollution, while such studies haven't been conducted in Changzhou, an important manufacturing base and polluted city in the Yangtze River Delta (YRD), China. This work, for the first time, performed a thorough chemical characterization on the fine particular matter (PM2.5) samples, collected during July 2015 to April 2016 across four seasons in Changzhou city. A suite of analytical techniques were employed to characterize organic carbon / elemental carbon (OC / EC), water-soluble organic carbon (WSOC), water-soluble inorganic ions (WSIIs), trace elements, and polycyclic aromatic hydrocarbons (PAHs) in PM2.5; in particular, an Aerodyne soot particle aerosol mass spectrometer (SP-AMS) was deployed to probe the chemical properties of water-soluble organic aerosols (WSOA). The average PM2.5 concentrations were found to be 108.3 μg m−3, and all identified species were able to reconstruct ~ 80 % of the PM2.5 mass. The WSIIs occupied about half of the PM2.5 mass (~ 52.1 %), with SO42−, NO3− and NH4+ as the major ions. On average, nitrate concentrations dominated over sulfate (mass ratio of 1.21), indicating influences from traffic emissions. OC and EC correlated well with each other and the highest OC / EC ratio (5.16) occurred in winter, suggesting complex OC sources likely including both secondarily formed and primarily emitted OA. Concentrations of eight trace elements (Mn, Zn, Al, B, Cr, Cu, Fe, Pb) can contribute up to 6.0 % of PM2.5 during winter. PAHs concentrations were also high in winter (140.25 ng m−3), which were predominated by median/high molecular weight PAHs with 5- and 6-rings. The organic matter including both water-soluble and water-insoluble species occupied ~ 20 % PM2.5 mass. SP-AMS determined that the WSOA had an average atomic oxygen-to-carbon (O / C), hydrogen-to-carbon (H / C), nitrogen-to-carbon (N / C) and organic matter-to-organic carbon (OM / OC) ratios of 0.36, 1.54, 0.11, and 1.74, respectively. Source apportionment of WSOA further identified two secondary OA (SOA) factors (a less oxidized and a more oxidized OA) and two primary OA (POA) factors (a nitrogen enriched hydrocarbon-like traffic OA and a cooking-related OA). On average, the POA contribution overweighed SOA (55 % vs. 45 %), indicating the important role of local anthropogenic emissions to the aerosol pollution in Changzhou. Our measurement also shows the abundance of organic nitrogen species in WSOA, and the source analyses suggest these species likely associated with traffic emissions, which warrants more investigations on PM samples from other locations.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7451
Author(s):  
Barbara Breza-Boruta ◽  
Karol Kotwica ◽  
Justyna Bauza-Kaszewska

Properly selected tillage methods and management of the available organic matter resources are considered important measures to enable farming in accordance with the principles of sustainable agriculture. Depending on the depth and intensity of cultivation, tillage practices affect soil chemical composition, structure and biological activity. The three-year experiment was performed on the soil under spring wheat (cv. Tybalt) short-time cultivation. The influence of different tillage systems and stubble management on the soil’s chemical and biological parameters was analyzed. Organic carbon content (OC); content of biologically available phosphorus (Pa), potassium (Ka), and magnesium (Mg); content of total nitrogen (TN), mineral nitrogen forms: N-NO3 and N-NH4 were determined in various soil samples. Moreover, the total number of microorganisms (TNM), bacteria (B), actinobacteria (A), fungi (F); soil respiratory activity (SR); and pH in 1 M KCl (pH) were also investigated. The results show that organic matter amendment is of greater influence on soil characteristics than the tillage system applied. Manure application, as well as leaving the straw in the field, resulted in higher amounts of organic carbon and biologically available potassium. A significant increase in the number of soil microorganisms was also observed in soil samples from the experimental plots including this procedure.


2019 ◽  
Vol 7 (2) ◽  
Author(s):  
Nur Edy Suminarti ◽  
A.Y. Edy Guntoro ◽  
A. N. Fajrin

Suminarti et al, 2018. Effect of Source and Dosage of Organic Materials on Changes in Soil Chemical Properties, Growth and Yield of Sorghum Plants (Sorghum bicolor L.Moench) var. KD4 in Dry Land Jatikerto, Malang. JLSO 7(2): Agricultural extensification is the right step to anticipate conditions of food insecurity. This refers to two reasons, namely (1) proliferation of land conversion activities, and (2) sorghum is a carbohydrate-producing plant that is quite tolerant when planted on dry land. The objective of this study was to obtain information about the sources and doses of organic matter that are appropriate to changes in soil chemical properties, growth and yield of sorghum plants, and has been carried out in the dry land of Jatikerto, Malang. A split plot designs with three replications were used in this study, sources of organic material (blothong, UB compost and cow dung) as the main plot, and doses of organic matter (125%, 100% and 75%) as a subplot. Soil analysis was carried out 3 times, i.e. before planting, after application of organic matter and at harvest. The agronomic observations were carried out destructively at 80 days after planting (DAP) including the components of growth (root dry weight, leaf area, and total dry weight of the plant) and harvest at the age of 90 DAP.F test at 5% level was used to test the effect of treatment, while the difference between treatments was based on LSD level of 5%.The results showed that there was a significant interaction between the source and dosage of organic matter on the leaf area and total dry weight, the highest yield was obtained in blothong at various doses. Higher yields of seeds per hectare were also found in blotong: 1.76 tons ha-1, and 1.73 tons ha-1 on 125% doses of organic matter. Blotong application is able to provide elements of N, P and K soil respectively 18.3%, 85.68% and 8.42% for plant.


10.5109/4546 ◽  
2003 ◽  
Vol 48 (1/2) ◽  
pp. 227-236
Author(s):  
Kazuhiko Egashira ◽  
Jing-Long Han ◽  
A.J.M.Sirajul Karim ◽  
Abu Zofar Md. Moslehuddin ◽  
Yoshio Yamada

Soil Research ◽  
2016 ◽  
Vol 54 (4) ◽  
pp. 418 ◽  
Author(s):  
R. J. Morrison ◽  
J. S. Gawander

Sugarcane production plateaued in Fiji at ~4 million tonnes annually (average ~55 t/ha) during the latter part of the 1980s but, in recent years, despite the continuing release of high yielding varieties, the total production has decreased to under 3 million tonnes (average ~45 t/ha). This study was initiated to study the changes in the properties of Oxisols following sugarcane cultivation to ascertain whether yield declines were due to degradation of soil biophysical and chemical properties. The study lasted from 1978 (when the soils were first cleared for agriculture) to 2009. Soil (0–15, 30–40 and 70–80 cm) properties including pH, organic carbon, cation exchange capacity, water retention, bulk density, phosphate retention and exchangeable bases were monitored. The observed topsoil changes could generally be related to changes in organic matter and associated ion exchange properties. The major changes occurred in the first three years after clearing, but some changes continued for many years. Subsoil samples (30–40 cm) showed an increase in organic carbon after cane cultivation, probably due to soil mixing during land preparation, organic matter movement during cropping and decay of sugarcane roots. At 70–80 cm, small but significant increases in organic carbon were observed along with small decreases in pH. Overall, these changes indicate that careful management of topsoils is essential for maintaining soil fertility and hence sugarcane productivity on these highly weathered soils.


2015 ◽  
Vol 2015 ◽  
pp. 1-9
Author(s):  
Carlos Eduardo Pacheco Lima ◽  
Mariana Rodrigues Fontenelle ◽  
Luciana Rodrigues Borba Silva ◽  
Daiane Costa Soares ◽  
Antônio Williams Moita ◽  
...  

The present work aimed to evaluate the behavior of ten fertility attributes of soil organic matter physical fractions and total organic carbon upon addition of three EM Bokashis to a Rhodic Ferralsol (FRr) and a Dystric Cambisol (CMd). An experiment was carried out in greenhouse in which the soils were placed into plastic trays and cultivated with tomato. A completely randomized design was used with four repetitions and factorial scheme of 2 × 3 + 2, consisting of two soils (FRr and CMd), three EM Bokashis (Poultry Manure Bokashi (BPM); CNPH Bokashi (BC); and Cattle Manure Bokashi (BCM)), and two controls (both soils without addition of Bokashi). The following fertility attributes were evaluated: pH, Ca2+, Mg2+, K+, Na+, P, SB, H + Al, CEC, andV. Particulate organic carbon (POC) and mineral-associated organic carbon (MOC) and total organic carbon (TOC) were also investigated. Finally, the Principal Component Analysis was conducted in order to identify possible patterns related to soils when fertilized with EM Bokashi. The addition of EM Bokashi increased the soil fertility and contents of POC. Different EM Bokashi presents distinguished effects on each soil. The PCA suggests that BPM presents higher capacity to modify the analyzed chemical attributes.


2009 ◽  
Vol 33 (3) ◽  
pp. 571-579 ◽  
Author(s):  
Geraldo Erli Faria ◽  
Nairam Félix de Barros ◽  
Roberto Ferreira Novais ◽  
Ivo Ribeiro Silva

Knowledge on variations in vertical, horizontal and temporal characteristics of the soil chemical properties under eucalyptus stumps left in the soil is of fundamental importance for the management of subsequent crops. The objective of this work was to evaluate the effect of eucalyptus stumps (ES) left after cutting on the spatial variability of chemical characteristics in a dystrophic Yellow Argisol in the eastern coastal plain region of Brazil. For this purpose, ES left for 31 and 54 months were selected in two experimental areas with similar characteristics, to assess the decomposition effects of the stumps on soil chemical attributes. Soil samples were collected directly around these ES, and at distances of 30, 60, 90, 120 and 150 cm away from them, in the layers 0-10, 10-20 and 20-40 cm along the row of ES, which is in-between the rows of eucalyptus trees of a new plantation, grown at a spacing of 3 x 3 m. The soil was sampled in five replications in plots of 900 m² each and the samples analyzed for pH, available P and K (Mehlich-1), exchangeable Al, Ca and Mg, total organic carbon (TOC) and C content in humic substances (HS) and in the free light fraction. The pH values and P, K, Ca2+, Mg2+ and Al3+ contents varied between the soil layers with increasing distance from the 31 and 54-monthold stumps. The highest pH, P, K, Ca2+ and Mg2+ values and the lowest Al3+ content were found in the surface soil layer. The TOC of the various fractions of soil organic matter decreased with increasing distance from the 31 and 54-month-old ES in the 0-10 and 10-20 cm layers, indicating that the root (and stump) cycling and rhizodeposition contribute to maintain soil organic matter. The C contents of the free light fraction, of the HS and TOC fractions were higher in the topsoil layer under the ES left for 31 months due to the higher clay levels of this layer, than in those found under the 54-month-old stumps. However, highest C levels of the different fractions of soil organic matter in the topsoil layer reflect the deposition and maintenance of forest residues on the soil surface, mainly after forest harvest.


Sign in / Sign up

Export Citation Format

Share Document