scholarly journals Liquid Biopsy Analysis of Circulating Tumor Biomarkers in Lung Cancer

2020 ◽  
Author(s):  
Peter Ping Lin

Risk stratification, prognostication and longitudinal monitoring of therapeutic efficacy in lung cancer patients remains highly challenging. It is imperative to establish robust surrogate biomarkers for identifying eligible patients, predicting and effectively monitoring clinical response as well as timely detecting emerging resistance to therapeutic regimens. Circulating tumor biomarkers, analyzed by liquid biopsy, are primarily composed of nucleic acid-based circulating tumor DNA (ctDNA) and an aneuploid cell-based category of circulating tumor cells (CTCs) and circulating tumor-derived endothelial cells (CTECs). Unlike ctDNA, cancer cells are the origin of all categories of various tumor biomarkers. Involvement of aneuploid CTCs and CTECs in tumorigenesis, neoangiogenesis, tumor progression, cancer metastasis and post-therapeutic recurrence has been substantially investigated. Both CTCs and CTECs possessing an active interplay and crosstalk constitute a unique category of cellular circulating tumor biomarkers. These cells concurrently harbor the intact cancer-related genetic signatures and full tumor marker expression profiles in sync with disease progression and therapeutic process. Recent progress in clinical implementation of non-invasive liquid biopsy has made it feasible to frequently carry out ctDNA analysis and unbiased detection of a full spectrum of non-hematologic circulating rare cells including CTCs and CTECs in lung cancer patients, regardless of variation in heterogeneous cell size and cancer cell surface anchor protein expression. In situ phenotypic and karyotypic comprehensive characterization of aneuploid CTCs and CTECs, in combination with single cell-based genotyping and improved ctDNA analyses, will facilitate and benefit multidisciplinary management of lung cancer.

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Yu Zhong ◽  
Liting Yang ◽  
Fang Xiong ◽  
Yi He ◽  
Yanyan Tang ◽  
...  

AbstractActin filament associated protein 1 antisense RNA 1 (named AFAP1-AS1) is a long non-coding RNA and overexpressed in many cancers. This study aimed to identify the role and mechanism of AFAP1-AS1 in lung cancer. The AFAP1-AS1 expression was firstly assessed in 187 paraffin-embedded lung cancer and 36 normal lung epithelial tissues by in situ hybridization. The migration and invasion abilities of AFAP1-AS1 were investigated in lung cancer cells. To uncover the molecular mechanism about AFAP1-AS1 function in lung cancer, we screened proteins that interact with AFAP1-AS1 by RNA pull down and the mass spectrometry analyses. AFAP1-AS1 was highly expressed in lung cancer clinical tissues and its expression was positively correlated with lung cancer patients’ poor prognosis. In vivo experiments confirmed that AFAP1-AS1 could promote lung cancer metastasis. AFAP1-AS1 promoted lung cancer cells migration and invasion through interacting with Smad nuclear interacting protein 1 (named SNIP1), which inhibited ubiquitination and degradation of c-Myc protein. Upregulation of c-Myc molecule in turn promoted the expression of ZEB1, ZEB2, and SNAIL gene, which ultimately enhanced epithelial to mesenchymal transition (EMT) and lung cancer metastasis. Understanding the molecular mechanism by which AFAP1-AS1 promotes lung cancer’s migration and invasion may provide novel therapeutic targets for lung cancer patients’ early diagnosis and therapy.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1250
Author(s):  
Guangchun Han ◽  
Ansam Sinjab ◽  
Kieko Hara ◽  
Warapen Treekitkarnmongkol ◽  
Patrick Brennan ◽  
...  

The novel coronavirus SARS-CoV-2 is the causative agent of the COVID-19 pandemic. Severely symptomatic COVID-19 is associated with lung inflammation, pneumonia, and respiratory failure, thereby raising concerns of elevated risk of COVID-19-associated mortality among lung cancer patients. Angiotensin-converting enzyme 2 (ACE2) is the major receptor for SARS-CoV-2 entry into lung cells. The single-cell expression landscape of ACE2 and other SARS-CoV-2-related genes in pulmonary tissues of lung cancer patients remains unknown. We sought to delineate single-cell expression profiles of ACE2 and other SARS-CoV-2-related genes in pulmonary tissues of lung adenocarcinoma (LUAD) patients. We examined the expression levels and cellular distribution of ACE2 and SARS-CoV-2-priming proteases TMPRSS2 and TMPRSS4 in 5 LUADs and 14 matched normal tissues by single-cell RNA-sequencing (scRNA-seq) analysis. scRNA-seq of 186,916 cells revealed epithelial-specific expression of ACE2, TMPRSS2, and TMPRSS4. Analysis of 70,030 LUAD- and normal-derived epithelial cells showed that ACE2 levels were highest in normal alveolar type 2 (AT2) cells and that TMPRSS2 was expressed in 65% of normal AT2 cells. Conversely, the expression of TMPRSS4 was highest and most frequently detected (75%) in lung cells with malignant features. ACE2-positive cells co-expressed genes implicated in lung pathobiology, including COPD-associated HHIP, and the scavengers CD36 and DMBT1. Notably, the viral scavenger DMBT1 was significantly positively correlated with ACE2 expression in AT2 cells. We describe normal and tumor lung epithelial populations that express SARS-CoV-2 receptor and proteases, as well as major host defense genes, thus comprising potential treatment targets for COVID-19 particularly among lung cancer patients.


Lung Cancer ◽  
2017 ◽  
Vol 107 ◽  
pp. 100-107 ◽  
Author(s):  
L. Sorber ◽  
K. Zwaenepoel ◽  
V. Deschoolmeester ◽  
P.E.Y. Van Schil ◽  
J. Van Meerbeeck ◽  
...  

2017 ◽  
Vol 12 (1) ◽  
pp. S1234 ◽  
Author(s):  
Hiroaki Akamatsu ◽  
Yasuhiro Koh ◽  
Satoshi Morita ◽  
Daichi Fujimoto ◽  
Isamu Okamoto ◽  
...  

2017 ◽  
Vol 12 (11) ◽  
pp. S2027
Author(s):  
A. D'Souza ◽  
C. Brooks ◽  
G. In ◽  
V. Raymond ◽  
R. Lanman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document