scholarly journals Digital Twin of the Mining Shaft and Hoisting System as an Opportunity to Improve the Management Processes of Shaft Infrastructure Diagnostics and Monitoring

2021 ◽  
Author(s):  
Piotr Kalinowski ◽  
Oskar Długosz ◽  
Paweł Kamiński

The following chapter presents a concept of a virtual model of a mine shaft equipped with a hoisting system for the purpose of improving the processes of diagnostics management of shaft infrastructure and its monitoring. The chapter presents a proposal of improvement of broadly known processes such as: diagnostics and monitoring of shaft infrastructure using digital models of 3D structures, the BIM and Digital Twin idea. Implementation of such systems in the operating mine working was presented together with expected results of monitoring. As the presented solution is currently only a concept, development of such system in real application is necessary to asses real benefits of application of Digital Twin system.

Author(s):  
Syed Mobeen Hasan ◽  
Kyuhyup Lee ◽  
Daeyoon Moon ◽  
Soonwook Kwon ◽  
Song Jinwoo ◽  
...  

2021 ◽  
Vol 2083 (3) ◽  
pp. 032022
Author(s):  
Yunpeng Guo ◽  
Kai Zou ◽  
Shengdong Chen ◽  
Feng Yuan ◽  
Fang Yu

Abstract Cooperative vehicle-infrastructure is one of the most import developing direction of future intelligent transportation system, while digital twin system can record, reproduce, and even deduce the physical system, which could be helpful for the development of cooperative vehicle-infrastructure. In this study, we proposed a 3D digital twin platform of intelligent transportation system based on road-side sensing, a core component of cooperative vehicle-infrastructure system. This platform consists of real road-side sensing unit,3D virtual environment, and the ROS bridge between them, by receiving the sensing results of physical world in real-time, the virtual world can reproduce the compatible road traffic information, such as the type,3D position and orientation of traffic participants.


2021 ◽  
Vol 37 ◽  
pp. 78-85
Author(s):  
Xingbin Chen ◽  
Peng Zhang ◽  
Xinhe Min ◽  
Nini Li ◽  
Wei Cao ◽  
...  

2021 ◽  
Vol 343 ◽  
pp. 03005
Author(s):  
Florina Chiscop ◽  
Bogdan Necula ◽  
Carmen Cristiana Cazacu ◽  
Cristian Eugen Stoica

The topic of this paper represents our research in the process of creating a virtual model (digital twin) for a fast-food company production chain starting with the moment when a customer launches an order, following with the processing of that order, until the customer receives it. The model will describe elements that are included in this process such as equipment, human resources and the necessary space that is needed to host this layout. The virtual model created in a simulation platform will be a replicate of a real fast-food company, thus helping us observe the real time dynamic of this production system. Using WITNESS HORIZON 23 we will construct the model of the layout based on real time data received from the fast-food company. This digital twin will be used to manage the production chain material flow, evaluating the performance of the system architecture in various scenarios. In order to obtain a diagnosis of the system’s performance we will simulate the workflow running through preliminary architecture in compliance with the real time behaviour to identify the bottlenecks and blockages in the flow trajectory. In the end we will propose two different optimised architectures for the fast-food company production chain.


2021 ◽  
Author(s):  
Shunsaku Matsumoto ◽  
Vivek Jaiswal ◽  
Tadashi Sugimura ◽  
Shintaro Honjo ◽  
Piotr Szalewski

Abstract This paper presents a concept of a mooring digital twin frameworkand a standardized inspection datatemplate to enable digital twin. The mooring digital twin framework supports real-time and/or on-demand decision making in mooring integrity management, which minimizes the failure risk while reducing operation and maintenance cost by efficient inspection, monitoring, repair, and strengthening. An industry survey conducted through the DeepStar project 18403 identified a standard template for recording inspection data as a high priority item to enable application of the digital twins for integrity management. Further, mooring chain was selected as a critical mooring component for which a standard inspection template was needed. The characteristics of damage/performance prediction with the proposed mooring digital twin framework are (i) to utilize surrogates and/or reduced-order models trained by high-fidelity physics simulation models, (ii) to combine all available lifecycle data about the mooring system, (iii) to evaluate current and future asset conditions in a systematic way based on the concept of uncertainty quantification (UQ). The general and mooring-specific digital twin development workflows are described with the identified essential data, physics models, and several UQ methodologies such as surrogate modeling, local and global sensitivity analyses, Bayesian prediction etc. Also, the proposed digital twin system architecture is summarized to illustrate the dataflow in digital twin development andutilization. The prototype of mooring digital twin dashboard, web-based risk visualization and advisory system, is developed to demonstrate the capability to visualize the system health diagnosis and prognosis and suggest possible measures/solutions for the high-risk components as a digital twin's insight.


2020 ◽  
pp. 1-10
Author(s):  
Xin Li ◽  
Bin He ◽  
Yanmin Zhou ◽  
Gang Li

2014 ◽  
Author(s):  
Witold Pawel Pawlus ◽  
Fred Liland ◽  
Nicolai Nilsen ◽  
Soren Oydna ◽  
Geir Hovland ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jiannan Yao ◽  
Xiaojie Deng ◽  
Chi Ma ◽  
Tong Xu

Blair mine hoists powered by drum winding are a key equipment in the transportation of a superdeep mine shaft. The step changes of hoisting velocity and acceleration caused by coil and layer crossover of rope winding on the LeBus drum, which will excite impact responses of hoisting systems, cannot be ignored in the hoisting system with high velocity. The paper focuses on investigating the effect of drum winding on impact responses of superdeep mine hoisting systems. Firstly, the hoisting velocity and acceleration were precisely modelled and calculated according to the structure of rope groove of the LeBus drum; secondly, impact responses of the dynamic displacement and load were obtained by applying the established model; eventually, an experiment was performed, and then, the validity of the established model and the response mechanism was verified. The paper will provide good technical support for the design and optimization of the mine hoists in superdeep mine shafts.


Sign in / Sign up

Export Citation Format

Share Document