scholarly journals Investigation of Dynamic Load in Superdeep Mine Hoisting Systems Induced by Drum Winding

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jiannan Yao ◽  
Xiaojie Deng ◽  
Chi Ma ◽  
Tong Xu

Blair mine hoists powered by drum winding are a key equipment in the transportation of a superdeep mine shaft. The step changes of hoisting velocity and acceleration caused by coil and layer crossover of rope winding on the LeBus drum, which will excite impact responses of hoisting systems, cannot be ignored in the hoisting system with high velocity. The paper focuses on investigating the effect of drum winding on impact responses of superdeep mine hoisting systems. Firstly, the hoisting velocity and acceleration were precisely modelled and calculated according to the structure of rope groove of the LeBus drum; secondly, impact responses of the dynamic displacement and load were obtained by applying the established model; eventually, an experiment was performed, and then, the validity of the established model and the response mechanism was verified. The paper will provide good technical support for the design and optimization of the mine hoists in superdeep mine shafts.

2014 ◽  
Vol 952 ◽  
pp. 210-215
Author(s):  
Shi Cheng Hu ◽  
Shuo Ouyang ◽  
Ning Bo Zou ◽  
Xiang Jun Wang

In order to investigate the electromechanical coupling dynamic behaviors of portal crane's hoisting system, the electromechanical coupling model of the system was established by utilizing Lagrange-Maxwell equation. Taking the MQ2535 portal crane as an example, the electromechanical coupling dynamic characteristic curves of the hoisting system was studied based on the MATLAB simulation platform, in addition that the interrelate and interactive characteristics between the electromagnetic system and mechanical system was presented. It is shown that the results have larger difference compared with the results of neglecting the electromechanical coupling effects. This is because of the energy-stored role of the electromagnetic system and the load tracking property of the driving motor that the dynamic load got buffered and then the dynamic load factor became lower. The research results can provide theoretical supports for matching and optimizing the parameters of electromechanical system and improving the portal crane safety.


2018 ◽  
Vol 67 (2) ◽  
pp. 25-48
Author(s):  
Waldemar Cichorski

The dynamic load displacements were analysed of rectangular concrete deep beams made of very high strength concrete, grade C200, including an evaluation of the physical non-linearity of the construction materials: concrete and reinforcing steel. The analysis was conducted using the method presented in [1]. The numerical calculation results are presented with particular reference to the displacement state of rectangular concrete deep beams. A comparative analysis was conducted on the effect of the high-strength concrete and the steel of increased strength on a class C200 concrete deep beam versus the results produced in [10] for a class C100 concrete deep beam. Keywords: mechanics of structures, reinforced concrete structures, deep beams, dynamic load, physical non-linearity


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Yu Zhang ◽  
Mianhao Qiu ◽  
Xixia Liu ◽  
Jun Li ◽  
Haijun Song ◽  
...  

A special design is needed for an unmanned tracked vehicle (UTV) to meet the requirements of off-road environments and complex tasks. A loose surface is the main terrain for tracked vehicles in off-road driving. Slope steering is inevitable while driving in such conditions; hence, its performance is a major concern for tracked vehicles on loose terrain. This study investigates the slope steering performance of a tracked vehicle. An improved dynamic steering model is proposed when considering the shear stress-shear displacement relation of soil at the track-ground interface. The influence of ground characteristics on the slope steering performance of a tracked vehicle is illustrated. The track slip rate is adopted as an index to evaluate the influence of typical vehicle structure parameters on the slope steering performance of a tracked vehicle. This study provides technical support for the design and optimization of UTV.


2011 ◽  
Vol 368-373 ◽  
pp. 2478-2482 ◽  
Author(s):  
Sheng Chun Wang ◽  
Rong Sheng Shen ◽  
Tong Hong Jin ◽  
Shi Jun Song

First establish a dynamic model of tower crane in the load lifting process, the lifting load is solved.Then establish the FEM model of the tower crane under the normal and the damage condition. Get the dynamic displacement of the normal and the damage status under the lifting dynamic load. Propose a damaged diagnosis method by the displacement rate. The results of the study show that this method can not only diagnose the structural damage status, but also determine the positions of structural damage. This will be a new search on tower crane structural health diagnosis.


2011 ◽  
Vol 255-260 ◽  
pp. 896-900
Author(s):  
Xiao Fei Liang ◽  
Yue Xu ◽  
Hong Jing Du

Based on the hoisting construction feature of large hinge-support tower and field circumstance, the cable hoisting system for Meng-dong river grand bridge at the west of Hunan province is designed. Studying on cable hoisting system design and construction of the CFST arch bridge, the paper takes systematic analysis and calculations on the key construction technology of the CFST arch bridge, and puts it in practice successfully which provides experience for the similar long—span bridge construction of the follow.


2011 ◽  
Vol 347-353 ◽  
pp. 3219-3222
Author(s):  
Xi Shun Zhang ◽  
Xiao Dong Wu ◽  
Shu Qin Ma

In-situ combustion (fire flooding) is one of important methods to improve heavy oil recovery ratio, utilizing the reservoir itself heavy component burning as dynamic displacement of crude oil, improving the crude oil character, flooding efficiency is high, applicability is extensive, and other recover techniques can not match. But the technical support is difficult and broad, and is the key in restricting the effect of in-situ combustion, especially for the effectiveness of development. With the increase of fire flooding development, flowing wells turns to artificial lifting wells, the gas production increases deeply, and the lifting technology faces a lot of new problems. Aiming at the problems of combustion in-situ, the relevant technologies were researched, then some methods and measures suiting to heavy oil fire flooding technology were proposed. And it provided reference for researching of deep heavy oil fire flooding lifting technology in the future.


2021 ◽  
Author(s):  
Piotr Kalinowski ◽  
Oskar Długosz ◽  
Paweł Kamiński

The following chapter presents a concept of a virtual model of a mine shaft equipped with a hoisting system for the purpose of improving the processes of diagnostics management of shaft infrastructure and its monitoring. The chapter presents a proposal of improvement of broadly known processes such as: diagnostics and monitoring of shaft infrastructure using digital models of 3D structures, the BIM and Digital Twin idea. Implementation of such systems in the operating mine working was presented together with expected results of monitoring. As the presented solution is currently only a concept, development of such system in real application is necessary to asses real benefits of application of Digital Twin system.


2015 ◽  
Vol 82 (5) ◽  
Author(s):  
Jinxiu Qiao ◽  
Chang Qing Chen

Double arrowhead honeycombs (DAHs) are a type of auxetic materials, i.e., showing negative Poisson's ratio (NPR), and are promising for energy absorption applications. Their in-plane impact responses are theoretically and numerically explored. Theoretical models for the collapse stress under quasi-static, low-velocity, and high-velocity impacts are developed, based upon the corresponding microstructural deformation modes. Obtained results show that the collapse stress under quasi-static and low velocity impacts depends upon the two re-entrant angles responsible for NPR, while it is insensitive to them under high-velocity impact. The developed theoretical models are employed to analyze the energy absorption capacity of DAHs, showing the absorbed energy under high-velocity impact approximately proportional to the second power of velocity. Extension of the high-velocity impact model to functionally graded (FG) DAHs is also discussed. Good agreement between the theoretical and finite element (FE) predictions on the impact responses of DAHs is obtained.


Sign in / Sign up

Export Citation Format

Share Document