scholarly journals Application of Carbon Nanomaterials Decorated Electrochemical Sensor for Analysis of Environmental Pollutants

2021 ◽  
Author(s):  
Sunil Kumar ◽  
Abhay Nanda Srivastva

Carbon nanomaterials (CNMs), especially carbon nanotubes and graphene, have been attracting tremendous attention in environmental analysis for rapid and cost effective detection of various analytes by electrochemical sensing. CNMs can increase the electrode effective area, enhance the electron transfer rate between the electrode and analytes, and/or act as catalysts to increase the efficiency of electrochemical reaction, detection, adsorption and removal are of great significance. Various carbon nanomaterials including carbon nanotubes, graphene, mesoporous carbon, carbon dots exhibited high adsorption and detection capacity. Carbon and its derivatives possess excellent electro catalytic properties for the modified sensors, electrochemical methods usually based on anodic stripping voltammetry at some modified carbon electrodes. Metal electrode detection sensitivity is enhanced through surface modification of working electrode (GCE). Heavy metals have the defined redox potential. A remarkable deal of efficiency with the electrochemical sensors can be succeeded by layering the surface of the working electrode with film of active electro-catalytic species. Usually, electro catalysts used for fabrication of sensors are surfactants, nano-materials, polymers, carbon-based materials, organic ligands and biomaterials.

A modified glassy carbon electrode (GCE) compositing multi-walled carbon nanotubes (MWCNTs), Nafion and bismuth film was prepared and applied for the sensitive detection of trace Pb (II). MWCNTs were dispersed into ethanol by ultrasonication in the presence of Nafion and the nanotubes are coated onto the bare GCE. After that, an extra Nafion adhesion agent is added to the electrode. By the in situ plating, a bismuth film was fabricated on the MWCNTs-NA/GCE, making the desired electrode, MWCNTs-NA-Bi/GCE. The modified electrode was characterized by differential pulse anodic stripping voltammetry, scanning electron microscopy, and cyclic voltammetry. A deposition potential of –1.4 V (vs. Ag/AgCl) and a deposition time of 300 s were applied to the working electrode under stirred conditions after optimizing. Nanotubes and Nafion concentrations and pH were carefully optimized to determine trace lead ions by using the electrode as an electrochemical-sensing platform. Nafion effectively increased the stability and adhesivity of the composite film. The MWCNTs-NA-Bi film modified electrode can remarkably increase the anodic peak current of Pb2+. The sensitivity of MWCNTs-NA-Bi/GCE is 4.35 times higher than that of the bare GCE with bismuth film. The prepared electrode showed excellent stability and reproducibility and can be applied for determination of Pb2+ contained wastewater.


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 1518
Author(s):  
Maria Tsetsoni ◽  
Eleni Roditi ◽  
Christos Kokkinos ◽  
Anastasios Economou

In this work, a microfabricated Au-film sensor was designed and fabricated for thevoltammmetric determination of Hg(II). The electrode was fabricated on a silicon chip with astandard microengineering approach utilizing photolithography for patterning the electrode shapeand sputtering for deposition of thin Cr and Au films on the surface of the sensors. The sensorswere used for the determination of trace Hg(II) with anodic stripping voltammetry (ASV): initiallyHg(II) in the sample was accumulated on the Au working electrode surface by reduction andformation of an Au(Hg) amalgam followed by oxidation of the preconcentrated metallic Hg using asquare wave voltammetric scan. The limit of detection was 1.5μgL−1 and the coefficient of variationof 10 consecutive measurements was 3.1%.


Nanomaterials ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 2020
Author(s):  
Jinchun Hu ◽  
Zhenguo Zhang

Flavonoids have a variety of physiological activities such as anti-free radicals, regulating hormone levels, antibacterial factors, and anti-cancer factors, which are widely present in edible and medicinal plants. Real-time detection of flavonoids is a key step in the quality control of diverse matrices closely related to social, economic, and health issues. Traditional detection methods are time-consuming and require expensive equipment and complicated working conditions. Therefore, electrochemical sensors with high sensitivity and fast detection speed have aroused extensive research interest. Carbon nanomaterials are preferred material in improving the performance of electrochemical sensing. In this paper, we review the progress of electrochemical sensors based on carbon nanomaterials including carbon nanotubes, graphene, carbon and graphene quantum dots, mesoporous carbon, and carbon black for detecting flavonoids in food and drug homologous substances in the last four years. In addition, we look forward to the prospects and challenges of this research field.


1992 ◽  
Vol 4 (7) ◽  
pp. 689-693 ◽  
Author(s):  
Kieran McLaughlin ◽  
Damien Boyd ◽  
Chi Hua ◽  
Malcolm R. Smyth

NANO ◽  
2018 ◽  
Vol 13 (08) ◽  
pp. 1850090 ◽  
Author(s):  
Ruyuan Jiang ◽  
Niantao Liu ◽  
Yuhong Su ◽  
Sanshuang Gao ◽  
Xamxikamar Mamat ◽  
...  

An integrative electroanalytical method was developed for detecting Cd[Formula: see text] and Pb[Formula: see text] ions in aqueous solutions. Polysulfide/graphene (RGO-S) nanocomposites were prepared and their performance as electrochemical sensors for Cd[Formula: see text] and Pb[Formula: see text] was evaluated. The RGO-S nanocomposite was carefully characterized by scanning electron microscopy with energy-dispersive X-ray spectrometry, transmission electron microscopy, and X-ray photoelectron spectroscopy. The as-prepared RGO-S was incorporated into a pyrolytic graphite electrode (RGO-S/PGE) and used for detecting trace amount of Cd[Formula: see text] and Pb[Formula: see text] by differential pulse anodic stripping voltammetry. Under optimal conditions, the stripping peak current of RGO-S/PGE varies linearly with heavy metal ion concentration in the ranges 2.0–300[Formula: see text][Formula: see text]g L[Formula: see text] for Cd[Formula: see text] and 1.0–300[Formula: see text][Formula: see text]g L[Formula: see text] for Pb[Formula: see text]. The limits of detection for Cd[Formula: see text] and Pb[Formula: see text] were estimated to be about 0.67[Formula: see text][Formula: see text]g L[Formula: see text] and 0.17[Formula: see text][Formula: see text]g L[Formula: see text], respectively. The prepared electrochemical heavy-metal-detecting electrode provides good repeatability and reproducibility with high sensitivity, making it a suitable candidate for monitoring Cd[Formula: see text] and Pb[Formula: see text] concentrations in aqueous environmental samples.


2016 ◽  
Vol 10 (2) ◽  
pp. 87-95 ◽  
Author(s):  
Jadranka Milikic ◽  
Nevena Markicevic ◽  
Aleksandar Jovic ◽  
Radmila Hercigonja ◽  
Biljana Sljukic

Different carbon electrodes were explored for application in electroanalysis, namely for sensing of bismuth ion as model analyte. Carbon materials tested included glassy carbon, basal and edge plane pyrolytic graphite, as well as nanostructured carbonized polyaniline prepared in the presence of 3,5-dinitrosalicylic acid. Bismuth ion was chosen as model analyte as protocol for its detection and quantifications is still to be determined. Herein, anodic stripping voltammetry was used with study of effect of several parameters such as scan rate and deposition time. Electrode based on carbonized polyaniline showed the highest activity for bismuth ion sensing in terms of the highest current densities recorded both in a laboratory and in real sample, while basal plane pyrolytic graphite electrode gave the lowest limit of detection.


2021 ◽  
Vol 11 (18) ◽  
pp. 8399
Author(s):  
Gabrielle R. Dangel ◽  
Hope Kumakli ◽  
Connor E. Rahm ◽  
Ryan White ◽  
Noe T. Alvarez

Incorporating the nanoscale properties of carbon nanotubes (CNTs) and their assemblies into macroscopic materials is at the forefront of scientific innovation. The electrical conductivity, chemical inertness, and large aspect ratios of these cylindrical structures make them ideal electrode materials for electrochemical studies. The ability to assemble CNTs into nano-, micro-, and macroscale materials broadens their field of applications. Here, we report the fabrication of random arrays of CNT cross-sections and their performance as nanoelectrode ensembles (NEEs). Single ribbons of drawable CNTs were employed to create the CNT-NEEs that allows easier fabrication of nanoscale electrodes for general electrochemical applications. Surface analysis of the prepared NEEs using scanning electron microscopy showed a random distribution of CNTs within the encapsulating polymer. Electrochemical testing via cyclic voltammetry and scanning electrochemical cell microscopy revealed voltametric differences from the typical macroelectrode response with the steady-state nature of NEEs. Finally, when the NEE was employed for Pb2+ detection using square-wave anodic stripping voltammetry, a limit of detection of 0.57 ppb with a linear range of 10–35 ppb was achieved.


Author(s):  
J Prasek ◽  
J Hubalek ◽  
M Adamek ◽  
O Jasek ◽  
L Zajickova

This paper deals with the problem of the replacement of mercury drop electrodes with solid electrodes in standard polarography. The screen-printed thick-film sensor with a three-electrode system was prepared. A working electrode was modified with nanopatterned nanostructures. Vertically aligned carbon nanotubes (CNTs) were grown on the working electrode. The process of the nanotubes growing was tested to create a homogeneous (CNTs) and high density CNT layer directly on the thick-film silver (Ag) layer. Thereby, the modified electrode is presented to be very perspective in heavy metal detection using electrochemical methods because of improvement of detection properties. The authors were able to determine the concentration of cadmium ions in units of µmol/L.


2020 ◽  
Vol 311 ◽  
pp. 127948
Author(s):  
Tianyi Zhang ◽  
Qingyuan Liu ◽  
Xueyong Wei ◽  
Zhuangde Jiang ◽  
Tianhong Cui

Sign in / Sign up

Export Citation Format

Share Document