scholarly journals Application of Artificial Neural Networks to Chemical and Process Engineering

2021 ◽  
Author(s):  
Fabio Machado Cavalcanti ◽  
Camila Emilia Kozonoe ◽  
Kelvin André Pacheco ◽  
Rita Maria de Brito Alves

The accelerated use of Artificial Neural Networks (ANNs) in Chemical and Process Engineering has drawn the attention of scientific and industrial communities, mainly due to the Big Data boom related to the analysis and interpretation of large data volumes required by Industry 4.0. ANNs are well-known nonlinear regression algorithms in the Machine Learning field for classification and prediction and are based on the human brain behavior, which learns tasks from experience through interconnected neurons. This empirical method can widely replace traditional complex phenomenological models based on nonlinear conservation equations, leading to a smaller computational effort – a very peculiar feature for its use in process optimization and control. Thereby, this chapter aims to exhibit several ANN modeling applications to different Chemical and Process Engineering areas, such as thermodynamics, kinetics and catalysis, process analysis and optimization, process safety and control, among others. This review study shows the increasing use of ANNs in the area, helping to understand and to explore process data aspects for future research.

Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 928
Author(s):  
Ferenc Hegedüs ◽  
Péter Gáspár ◽  
Tamás Bécsi

Nonlinear optimization-based motion planning algorithms have been successfully used for dynamically feasible trajectory planning of road vehicles. However, the main drawback of these methods is their significant computational effort and thus high runtime, which makes real-time application a complex problem. Addressing this field, this paper proposes an algorithm for fast simulation of road vehicle motion based on artificial neural networks that can be used in optimization-based trajectory planners. The neural networks are trained with supervised learning techniques to predict the future state of the vehicle based on its current state and driving inputs. Learning data is provided for a wide variety of randomly generated driving scenarios by simulation of a dynamic vehicle model. The realistic random driving maneuvers are created on the basis of piecewise linear travel velocity and road curvature profiles that are used for the planning of public roads. The trained neural networks are then used in a feedback loop with several variables being calculated by additional numerical integration to provide all the outputs of the original dynamic model. The presented model can be capable of short-term vehicle motion simulation with sufficient precision while having a considerably faster runtime than the original dynamic model.


2008 ◽  
Vol 17 (3) ◽  
pp. 365-376 ◽  
Author(s):  
Abdoul-Fatah Kanta ◽  
Ghislain Montavon ◽  
Michel Vardelle ◽  
Marie-Pierre Planche ◽  
Christopher C. Berndt ◽  
...  

2017 ◽  
Vol 107 (07-08) ◽  
pp. 536-540
Author(s):  
S. J. Pieczona ◽  
F. Muratore ◽  
M. F. Prof. Zäh

Zur Dynamiksteigerung von Scannersystemen werden verschiedene Arten von Modellierungs- und Regelungsmethoden in der Forschung genutzt. Jedoch sind Nichtlinearitäten, welche das Systemverhalten nachweisbar beeinflussen, in aller Regel nicht Teil der Untersuchung. Mit der Anwendung künstlicher neuronaler Netzwerke (KNN) wird das gesamte dynamische Systemverhalten sowohl für ein geregeltes als auch für ein ungeregeltes Scannersystem abgebildet. So wird geklärt, ob sich diese Art der Modellbildung für eine zukünftige Dynamiksteigerung eignet.   To enhance the dynamics of a scanner system, different methods of modelling and control are utilized. Nonlinearities, which have a certain impact on the system’s behavior, are generally ignored, though. By applying artificial neural networks, the overall dynamics of a controlled and an uncontrolled scanner could be represented. Thus, it will be clarified whether this kind of modelling is appropriate for a future dynamic enhancement.


Author(s):  
M. Willis ◽  
C. De Massimo ◽  
G. Montague ◽  
M. Tham ◽  
A. Morris

Author(s):  
Suraphan Thawornwong ◽  
David Enke

During the last few years there has been growing literature on applications of artificial neural networks to business and financial domains. In fact, a great deal of attention has been placed in the area of stock return forecasting. This is due to the fact that once artificial neural network applications are successful, monetary rewards will be substantial. Many studies have reported promising results in successfully applying various types of artificial neural network architectures for predicting stock returns. This chapter reviews and discusses various neural network research methodologies used in 45 journal articles that attempted to forecast stock returns. Modeling techniques and suggestions from the literature are also compiled and addressed. The results show that artificial neural networks are an emerging and promising computational technology that will continue to be a challenging tool for future research.


Author(s):  
Pankaj Dadheech ◽  
Ankit Kumar ◽  
Vijander Singh ◽  
Linesh Raja ◽  
Ramesh C. Poonia

The networks acquire an altered move towards the difficulty solving skills rather than that of conventional computers. Artificial neural networks are comparatively crude electronic designs based on the neural structure of the brain. The chapter describes two different types of approaches to training, supervised and unsupervised, as well as the real-time applications of artificial neural networks. Based on the character of the application and the power of the internal data patterns we can normally foresee a network to train quite well. ANNs offers an analytical solution to conventional techniques that are often restricted by severe presumptions of normality, linearity, variable independence, etc. The chapter describes the necessities of items required for pest management through pheromones such as different types of pest are explained and also focused on use of pest control pheromones.


1995 ◽  
Vol 31 (6) ◽  
pp. 1484-1491 ◽  
Author(s):  
G.E. Cook ◽  
R.J. Barnett ◽  
K. Andersen ◽  
A.M. Strauss

2018 ◽  
Vol 41 (1) ◽  
pp. 233-253 ◽  
Author(s):  
Jennifer L. Raymond ◽  
Javier F. Medina

Supervised learning plays a key role in the operation of many biological and artificial neural networks. Analysis of the computations underlying supervised learning is facilitated by the relatively simple and uniform architecture of the cerebellum, a brain area that supports numerous motor, sensory, and cognitive functions. We highlight recent discoveries indicating that the cerebellum implements supervised learning using the following organizational principles: ( a) extensive preprocessing of input representations (i.e., feature engineering), ( b) massively recurrent circuit architecture, ( c) linear input–output computations, ( d) sophisticated instructive signals that can be regulated and are predictive, ( e) adaptive mechanisms of plasticity with multiple timescales, and ( f) task-specific hardware specializations. The principles emerging from studies of the cerebellum have striking parallels with those in other brain areas and in artificial neural networks, as well as some notable differences, which can inform future research on supervised learning and inspire next-generation machine-based algorithms.


Sign in / Sign up

Export Citation Format

Share Document