scholarly journals Fast Motion Model of Road Vehicles with Artificial Neural Networks

Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 928
Author(s):  
Ferenc Hegedüs ◽  
Péter Gáspár ◽  
Tamás Bécsi

Nonlinear optimization-based motion planning algorithms have been successfully used for dynamically feasible trajectory planning of road vehicles. However, the main drawback of these methods is their significant computational effort and thus high runtime, which makes real-time application a complex problem. Addressing this field, this paper proposes an algorithm for fast simulation of road vehicle motion based on artificial neural networks that can be used in optimization-based trajectory planners. The neural networks are trained with supervised learning techniques to predict the future state of the vehicle based on its current state and driving inputs. Learning data is provided for a wide variety of randomly generated driving scenarios by simulation of a dynamic vehicle model. The realistic random driving maneuvers are created on the basis of piecewise linear travel velocity and road curvature profiles that are used for the planning of public roads. The trained neural networks are then used in a feedback loop with several variables being calculated by additional numerical integration to provide all the outputs of the original dynamic model. The presented model can be capable of short-term vehicle motion simulation with sufficient precision while having a considerably faster runtime than the original dynamic model.

2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Ahmed K. Abbas ◽  
Salih Rushdi ◽  
Mortadha Alsaba ◽  
Mohammed F. Al Dushaishi

Predicting the rate of penetration (ROP) is a significant factor in drilling optimization and minimizing expensive drilling costs. However, due to the geological uncertainty and many uncontrolled operational parameters influencing the ROP, its prediction is still a complex problem for the oil and gas industries. In the present study, a reliable computational approach for the prediction of ROP is proposed. First, fscaret package in a R environment was implemented to find out the importance and ranking of the inputs’ parameters. According to the feature ranking process, out of the 25 variables studied, 19 variables had the highest impact on ROP based on their ranges within this dataset. Second, a new model that is able to predict the ROP using real field data, which is based on artificial neural networks (ANNs), was developed. In order to gain a deeper understanding of the relationships between input parameters and ROP, this model was used to check the effect of the weight on bit (WOB), rotation per minute (rpm), and flow rate (FR). Finally, the simulation results of three deviated wells showed an acceptable representation of the physical process, with reasonable predicted ROP values. The main contribution of this research as compared to previous studies is that it investigates the influence of well trajectory (azimuth and inclination) and mechanical earth modeling parameters on the ROP for high-angled wells. The major advantage of the present study is optimizing the drilling parameters, predicting the proper penetration rate, estimating the drilling time of the deviated wells, and eventually reducing the drilling cost for future wells.


Batteries ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 85
Author(s):  
Marco Ströbel ◽  
Julia Pross-Brakhage ◽  
Mike Kopp ◽  
Kai Peter Birke

Tracking the cell temperature is critical for battery safety and cell durability. It is not feasible to equip every cell with a temperature sensor in large battery systems such as those in electric vehicles. Apart from this, temperature sensors are usually mounted on the cell surface and do not detect the core temperature, which can mean detecting an offset due to the temperature gradient. Many sensorless methods require great computational effort for solving partial differential equations or require error-prone parameterization. This paper presents a sensorless temperature estimation method for lithium ion cells using data from electrochemical impedance spectroscopy in combination with artificial neural networks (ANNs). By training an ANN with data of 28 cells and estimating the cell temperatures of eight more cells of the same cell type, the neural network (a simple feed forward ANN with only one hidden layer) was able to achieve an estimation accuracy of ΔT= 1 K (10 ∘C <T< 60 ∘C) with low computational effort. The temperature estimations were investigated for different cell types at various states of charge (SoCs) with different superimposed direct currents. Our method is easy to use and can be completely automated, since there is no significant offset in monitoring temperature. In addition, the prospect of using the above mentioned approach to estimate additional battery states such as SoC and state of health (SoH) is discussed.


2021 ◽  
Author(s):  
Fabio Machado Cavalcanti ◽  
Camila Emilia Kozonoe ◽  
Kelvin André Pacheco ◽  
Rita Maria de Brito Alves

The accelerated use of Artificial Neural Networks (ANNs) in Chemical and Process Engineering has drawn the attention of scientific and industrial communities, mainly due to the Big Data boom related to the analysis and interpretation of large data volumes required by Industry 4.0. ANNs are well-known nonlinear regression algorithms in the Machine Learning field for classification and prediction and are based on the human brain behavior, which learns tasks from experience through interconnected neurons. This empirical method can widely replace traditional complex phenomenological models based on nonlinear conservation equations, leading to a smaller computational effort – a very peculiar feature for its use in process optimization and control. Thereby, this chapter aims to exhibit several ANN modeling applications to different Chemical and Process Engineering areas, such as thermodynamics, kinetics and catalysis, process analysis and optimization, process safety and control, among others. This review study shows the increasing use of ANNs in the area, helping to understand and to explore process data aspects for future research.


Author(s):  
Wellison José de Santana Gomes

Abstract Structural reliability theory has been applied to many engineering problems in the last decades, with the primary objective of quantifying the safety of such structures. Although in some cases approximated methods may be used, many times the only alternatives are those involving more demanding approaches, such as Monte Carlo simulation (MCS). In this context, surrogate models have been widely employed as an attempt to keep the computational effort acceptable. In this paper, an adaptive approach for reliability analysis using surrogate models, proposed in the literature in the context of Kriging and polynomial chaos expansions (PCEs), is adapted for the case of multilayer perceptron (MLP) artificial neural networks (ANNs). The methodology is employed in the solution of three benchmark reliability problems and compared to MCS and other methods from the literature. In all cases, the ANNs led to results very close to those obtained by MCS and required much less limit state function evaluations. Also, the performance of the ANNs was found comparable, in terms of accuracy and efficiency, to the performance of the other methods.


Sign in / Sign up

Export Citation Format

Share Document