scholarly journals Qualitative Analysis for Controllable Dynamical Systems: Stability with Control Lyapunov Functions

2021 ◽  
Author(s):  
Adela Ionescu

The present chapter focuses on some recent work on the qualitatively analysis of dynamical systems, namely stability, a powerful tool with multiple connected appliances. Among them, feedback is a powerful idea which is used extensively in natural and technological systems. In engineering, feedback has been rediscovered and patented many times in many different contexts. Stabilizing a dynamical system could be often easier if we approach controllable systems. When the dynamical system is in a controllable form, we can place bounds on its behavior by analyzing the improvement of the linear and nonlinear operators that describe the system. In this chapter it is analyzed how a control in a simple form, could influence the possibility to construct the so-called Control Lyapunov Function (CLF) in order to stabilize the dynamical system in study. The main idea is to test multiple cases, in order to get a rich information panel and to make easier the problem of finding a CLF, which is generally a difficult task. As applications, models from excitable media are chosen.

2017 ◽  
Vol 27 (09) ◽  
pp. 1750144 ◽  
Author(s):  
Gamal M. Mahmoud ◽  
Ahmed A. M. Farghaly ◽  
A. A.-H. Shoreh

In this work, we propose a technique to study nonlinear dynamical systems with fractional-order. The main idea of this technique is to transform the fractional-order dynamical system to the integer one based on Jumarie’s modified Riemann–Liouville sense. Many systems in the interdisciplinary fields could be described by fractional-order nonlinear dynamical systems, such as viscoelastic systems, dielectric polarization, electrode-electrolyte polarization, heat conduction, resistance-capacitance-inductance (RLC) interconnect and electromagnetic waves. To deal with integer order dynamical system it would be much easier in contrast with fractional-order system. Two systems are considered as examples to illustrate the validity and advantages of this technique. We have calculated the Lyapunov exponents of these examples before and after the transformation and obtained the same conclusions. We used the integer version of our example to compute numerically the values of the fractional-order and the system parameters at which chaotic and hyperchaotic behaviors exist.


1996 ◽  
Vol 06 (11) ◽  
pp. 2119-2125 ◽  
Author(s):  
D. GLIGOROSKI ◽  
D. DIMOVSKI ◽  
L. KOCAREV ◽  
V. URUMOV ◽  
L.O. CHUA

We suggest a method for encoding messages by chaotic dynamical systems. The main idea is that by targeting the trajectories of some chaotic dynamical system with time constraint, someone can send a information to the remote recipient. The concept is based on setting receptors in the phase space of the dynamical system, and then targeting the trajectory between them. We considered the time of arriving from one receptor to another as a carrier of information obtained by searching in the table of values for arriving times.


2007 ◽  
Vol 5 ◽  
pp. 195-200
Author(s):  
A.V. Zhiber ◽  
O.S. Kostrigina

In the paper it is shown that the two-dimensional dynamical system of equations is Darboux integrable if and only if its characteristic Lie algebra is finite-dimensional. The class of systems having a full set of fist and second order integrals is described.


Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 379
Author(s):  
Miguel Abadi ◽  
Vitor Amorim ◽  
Sandro Gallo

From a physical/dynamical system perspective, the potential well represents the proportional mass of points that escape the neighbourhood of a given point. In the last 20 years, several works have shown the importance of this quantity to obtain precise approximations for several recurrence time distributions in mixing stochastic processes and dynamical systems. Besides providing a review of the different scaling factors used in the literature in recurrence times, the present work contributes two new results: (1) For ϕ-mixing and ψ-mixing processes, we give a new exponential approximation for hitting and return times using the potential well as the scaling parameter. The error terms are explicit and sharp. (2) We analyse the uniform positivity of the potential well. Our results apply to processes on countable alphabets and do not assume a complete grammar.


1989 ◽  
Vol 03 (15) ◽  
pp. 1185-1188 ◽  
Author(s):  
J. SEIMENIS

We develop a method to find solutions of the equations of motion in Hamiltonian Dynamical Systems. We apply this method to the system [Formula: see text] We study the case a → 0 and we find that in this case the system has an infinite number of period dubling bifurcations.


2021 ◽  
pp. 102986492098831
Author(s):  
Andrea Schiavio ◽  
Pieter-Jan Maes ◽  
Dylan van der Schyff

In this paper we argue that our comprehension of musical participation—the complex network of interactive dynamics involved in collaborative musical experience—can benefit from an analysis inspired by the existing frameworks of dynamical systems theory and coordination dynamics. These approaches can offer novel theoretical tools to help music researchers describe a number of central aspects of joint musical experience in greater detail, such as prediction, adaptivity, social cohesion, reciprocity, and reward. While most musicians involved in collective forms of musicking already have some familiarity with these terms and their associated experiences, we currently lack an analytical vocabulary to approach them in a more targeted way. To fill this gap, we adopt insights from these frameworks to suggest that musical participation may be advantageously characterized as an open, non-equilibrium, dynamical system. In particular, we suggest that research informed by dynamical systems theory might stimulate new interdisciplinary scholarship at the crossroads of musicology, psychology, philosophy, and cognitive (neuro)science, pointing toward new understandings of the core features of musical participation.


2015 ◽  
Vol 15 (02) ◽  
pp. 1550010
Author(s):  
Sheng Huang ◽  
Mikael Skoglund

This note proves that an induced transformation with respect to a finite measure set of a recurrent asymptotically mean stationary dynamical system with a sigma-finite measure is asymptotically mean stationary. Consequently, the Shannon–McMillan–Breiman theorem, as well as the Shannon–McMillan theorem, holds for all reduced processes of any finite-state recurrent asymptotically mean stationary random process. As a by-product, a ratio ergodic theorem for asymptotically mean stationary dynamical systems is presented.


Author(s):  
W. P. M. H. Heemels ◽  
B. De Schutter ◽  
J. Lunze ◽  
M. Lazar

Wherever continuous and discrete dynamics interact, hybrid systems arise. This is especially the case in many technological systems in which logic decision-making and embedded control actions are combined with continuous physical processes. Also for many mechanical, biological, electrical and economical systems the use of hybrid models is essential to adequately describe their behaviour. To capture the evolution of these systems, mathematical models are needed that combine in one way or another the dynamics of the continuous parts of the system with the dynamics of the logic and discrete parts. These mathematical models come in all kinds of variations, but basically consist of some form of differential or difference equations on the one hand and automata or other discrete-event models on the other hand. The collection of analysis and synthesis techniques based on these models forms the research area of hybrid systems theory, which plays an important role in the multi-disciplinary design of many technological systems that surround us. This paper presents an overview from the perspective of the control community on modelling, analysis and control design for hybrid dynamical systems and surveys the major research lines in this appealing and lively research area.


Sign in / Sign up

Export Citation Format

Share Document