scholarly journals Work Cycle of Internal Combustion Engine Due to Rightsizing

2021 ◽  
Author(s):  
Zbigniew J. Sroka

It is worth still working on the development of the internal combustion engine, because its time was not yet over. This was demonstrated by the author’s review of the literature, indicating at least the perspective of 2050 the universality of the engine as the primary propulsion or support in hybrid transport units. The presented considerations may have a broader perspective, when the thermodynamic problems of a thermal machine such as an internal combustion engine are indicated. This chapter deals with the issues of changing the swept volume known as downsizing/rightsizing. An equivalent swept volume was introduced, defined by the coefficients determining changes in the cylinder diameter and the stroke of the piston. An attempt was made to find the mutual relations to the efficiency of the work cycle and engine operating parameters. The research methodology was proposed as a mix of laboratory tests and theoretical analyses, on the basis of which it was established that while maintaining the same value of the downsizing index, despite the various permissible combinations of cylinder diameter and piston stroke changes, the cycle efficiency remains unchanged. The engine operating parameters are changing, resulting from the use of support systems for rightsizing geometric changes.

Author(s):  
Jiang Lu ◽  
Ashwani K. Gupta ◽  
Eugene L. Keating

Abstract Numerical simulation of flow, combustion, heat release rate and pollutants emission characteristics have been obtained using a single cylinder internal combustion engine operating with propane as the fuel. The data are compared with experimental results and show excellent agreement for peak pressure and the rate of pressure rise as a function of crank angle. The results obtained for NO and CO are also found to be in good agreement and are similar to those reported in the literature for the chosen combustion chamber geometry. The results have shown that both the combustion chamber geometry and engine operating parameters affects the flame growth within the combustion chamber which subsequently affects the pollutants emission levels. The code employed the time marching procedure and solves the governing partial differential equations of multi-component chemically reacting fluid flow by finite difference method. The numerical results provide a cost effective means of developing advanced internal combustion engine chamber geometry design that provides high efficiency and low pollution levels. It is expected that increased computational tools will be used in the future for enhancing our understanding of the detailed combustion process in internal combustion engines and all other energy conversion systems. Such detailed information is critical for the development of advanced methods for energy conservation and environmental pollution control.


2019 ◽  
Vol 178 (3) ◽  
pp. 182-186
Author(s):  
Zbigniew SROKA ◽  
Maciej DWORACZYŃSKI

The modification of the downsizing trend of internal combustion engines towards rightsizing is a new challenge for constructors. The change in the displacement volume of internal combustion engines accompanying the rightsizing idea may in fact mean a reduction or increase of the defining swept volume change factors and thus may affect the change in the operating characteristics as a result of changes in combustion process parameters - a research problem described in this publication. Incidents of changes in the displacement volume were considered along with the change of the compression space and at the change of the geometric degree of compression. The new form of the mathematical dependence describing the efficiency of the thermodynamic cycle makes it possible to evaluate the opera-tion indicators of the internal combustion engine along with the implementation of the rightsizing idea. The work demonstrated the in-variance of cycle efficiency with different forms of rightsizing.


2007 ◽  
Vol 130 (3) ◽  
pp. 15-25
Author(s):  
Kazimierz LEJDA ◽  
Artur JAWORSKI ◽  
Adam USTRZYCKI

This article presents selected results of scientifi c research concerning the infl uence of the LPG fuel sequential injection parameters on the operating parameters of the internal combustion engine. Research was performed in the Department of Vehicles and IC Engines on SI MD-111E engine, which has been adapted to LPG fuel supply in multi-point injection system to the branches of the inlet manifold. During the research the sequential single and double injection were performed. The tests results obtained show very signifi cant infl uence of the injection parameters (onset of injection and size of the dose) on the engine operating parameters such as: engine power, torque end effi ciency.


2011 ◽  
Vol 84 (6) ◽  
pp. 1311-1317 ◽  
Author(s):  
M. S. Assad ◽  
I. G. Kucharchuk ◽  
O. G. Penyazkov ◽  
A. M. Rusetskii ◽  
A. D. Chornyi

1964 ◽  
Vol 86 (2) ◽  
pp. 201-208
Author(s):  
P. Van Der Werf

A computation of the idealized compression-ignition cycle with the aid of thermodynamic charts does not produce speedy and accurate results because (a) the procedure involves laborious trial-and-error methods, and (b) the charts available do not cover the whole range of mixture strengths at which this type of internal combustion engine may operate. It is shown in this paper that existing thermodynamic charts may be used to develop empirical equations for efficiency, work output, and mean effective pressure of the cycle for a range of mixture strengths and, in general, with improved accuracy. The equations are presented in the form of nomographs enabling performance to be estimated for compression-ignition or “Diesel” engines of unsupercharged design and operating on the mixed cycle.


2010 ◽  
Vol 26-28 ◽  
pp. 186-189 ◽  
Author(s):  
Jiang Zhu ◽  
Ping Yuan Xi

The basic parameters of internal combustion engines reflect the working performance and quality of the internal combustion engine. Therefore it is of great significance to design the operating parameters of vehicle engine by design optimization method. In this paper, hybrid genetic algorithm is adopted to optimize operating parameters of vehicle engine, so that optimization process was simplified and the global optimal solution is ensured reliably. Being satisfied with the heating loading, mechanical loading and the conditions of gas mixture of engine and boundary constraints, the optimization mathematical model is created which is to minimize the heating surface area of engine. Considering the problem of low efficiency and local optimum caused by traditional optimal methods, the hybrid Genetic Algorithm are adopted to solve the optimization model. So that the optimization process is simplified and global optimum is acquired reliably.


Author(s):  
Jerald A. Caton

The second law of thermodynamics provides the mechanism for assessing the quality of energy. The non-conserved property used for this assessment is called exergy, availability or available energy. For the internal combustion engine, the exergy of the fuel is distributed among work, heat transfer, exhaust, and is destroyed by several processes. The major destruction of exergy for the internal combustion engine is during the combustion process. This paper documents this destruction for a wide range of engine operating parameters, design parameters, and fuels. A 5.7 liter, spark ignition, automotive engine was selected for this study. Operating parameters that were examined included equivalence ratio, speed, load and spark timing. Design parameters that were examined included compression ratio, expansion ratio and the use of turbocharging. Combustion parameters and oxidizer were examined as well. The fuels examined included isooctane (base), methane, propane, hexane, methanol, ethanol, hydrogen and carbon monoxide. For the part load base case (1400 rpm and a bmep of 325 kPa) using isooctane, the destruction of exergy was 21% of the fuel exergy. For many of the engine operating and design parameters, this destruction was relatively constant (between about 20 and 23%). The parameters that resulted in the greatest change of the exergy destruction were (1) exhaust gas recirculation, and (2) inlet oxygen concentration. In general, the amount of the destruction of exergy during the combustion processes was associated with the level of the combustion temperatures.


Author(s):  
В. В. Руденко ◽  
И. В. Калужинов ◽  
Н. А. Андрущенко

The presence in operation of many prototypes of UAVs with propeller propellers, the use of such devices at relatively low altitudes and flight speeds makes the problem of noise reduction from UAVs urgent both from the point of view of acoustic imperceptibility and ecology.The aim of the work is to determine a set of methods that help to reduce the visibility of UAVs in the acoustic range. It is shown that the main source of noise from the UAV on the ground is the power plant, which includes the engine and the propeller. The parameters of the power plants influencing the processes that determine the acoustic signature of the UAV were investigated. A comprehensive analysis of the factors affecting visibility was carried out. The power plants include two-stroke and four-stroke engines, internal combustion and two-blade propellers. The use of silencers on the exhaust of the internal combustion engine was considered. The spectral characteristics of the acoustic fields of the propeller-driven power plants for the operating sample of the UAV "Eco" were obtained. The measurements were carried out in one-third octave and 1/48 octave frequency bands under static conditions. The venue is the KhAI airfield. Note that the propellers that were part of the power plants operated at Reynolds numbers (Re0,75<2*105), which can significantly affect its aerodynamic and acoustic characteristics. It is shown that when choosing a UAV control system, one should take into account the fact that two-stroke piston engines are the dominant source in the noise of propeller-driven control systems in the absence of a hood and mufflers in the intake and exhaust tracts. The use of a four-stroke internal combustion engine significantly reduces the noise of the control system. In the general case, the position of the boundaries of the zone of acoustic visibility of a UAV at the location of the observer is determined by the ratio between the intensity of acoustic radiation perceived by the observer from the UAV and the intensity of sound corresponding to the natural acoustic background and depends on the degree of manifestation of acoustic effects accompanying the propagation of sound in a turbulent atmosphere - the refraction of sound waves. Absorption and dissipation of acoustic energy. The calculation and comparison of the UAV detection range was carried out taking into account the existing natural maskers.The results of experimental studies are presented that allow assessing the degree of acoustic signature of the UAV. A set of measures aimed at reducing the intensity of the acoustic signature of the UAV in various regions of the radiation spectrum has been determined.


Sign in / Sign up

Export Citation Format

Share Document