scholarly journals P. falciparum and Its Molecular Markers of Resistance to Antimalarial Drugs

2021 ◽  
Author(s):  
Peter Hodoameda

The use of molecular markers of resistance to monitor the emergence, and the spread of parasite resistance to antimalarial drugs is a very effective way of monitoring antimalarial drug resistance. The identification and validation of molecular markers have boosted our confidence in using these tools to monitor resistance. For example, P. falciparum chloroquine resistance transporter (PfCRT), P. falciparum multidrug resistance protein 1 (PfMDR1), P. falciparum multidrug kelch 13 (pfk13), have been identified as molecular markers of resistance to chloroquine, lumefantrine, and artemisinin respectively. The mechanism of resistance to antimalarial drugs is mostly by; (1) undergoing mutations in the parasite genome, leading to expelling the drug from the digestive vacuole, or (2) loss of binding affinity between the drug and its target. Increased copy number in the pfmdr1 gene also leads to resistance to antimalarial drugs. The major cause of the widespread chloroquine and sulfadoxine-pyrimethamine resistance globally is the spread of parasites resistant to these drugs from Southeast Asia to Africa, the Pacific, and South America. Only a few mutations in the parasite genome lead to resistance to chloroquine and sulfadoxine-pyrimethamine arising from indigenous parasites in Africa, Pacific, and South America.


Author(s):  
Séni Nikiema ◽  
Samuel Sindié Sermé ◽  
Salif Sombié ◽  
Amidou Diarra ◽  
Noelie Bere Henry ◽  
...  

Introduction: In spite of considerable progress, malaria remains a public health problem in many areas, particularly in sub-Saharan Africa. One major complexity of malaria disease is caused by the development and the spread of vector and parasite resistance to insecticides and antimalarial drugs respectively. The Pfcrt76T gene mutation has been validated as a marker conferring resistance to chloroquine and other antimalarial drugs. The extension of Plasmodium falciparum resistance to commonly used antimalarial drugs (chloroquine, sulfadoxine-pyrimethamine) led to the adoption and the use of artemisinin-based combinations in Burkina Faso since 2005. Aims: The present study was initiated to assess the prevalence of the Pfcrt76T mutation in two different malaria epidemiological setting after a decade of introduction of artemisinin-based combination therapies (ACTs) in Burkina Faso.  Methodology:  The study population consisted of 181 uncomplicated malaria patients recruited in Banfora and Saponé health districts in 2012 and 2013. Blood samples were collected from finger prick on filter paper, dried and sent to the Molecular Biology Laboratory at Centre National de Recherche et de Formation sur le Paludisme (CNRFP) for molecular analyzes. DNA of Plasmodium falciparum was extracted with DNA extraction kit (Qiagen®) and the Pfcrt76T mutation was determined based on Polymerase Chain Reaction / Restriction Fragment Length Polymorphism technique (RFLP). Results:  The results of this study showed that the frequency of the pfcrt76T mutant allele (33.7%) was statistically lower than the Pfcrt76K wild-type allele (57.4%) in the study area. Moreover, the prevalence of Pfcrt76T mutation was neither associated with the patient age nor with the parasite density while a significant difference was observed between the two epidemiological setting, Banfora and Saponé. Conclusion: The findings of this study has shown a drop in the prevalence of mutant parasites Pfcrt76T in both the study area eight years after the introduction of ACTs compared to previous studies.



Author(s):  
Weilin Zeng ◽  
Hui Zhao ◽  
Wei Zhao ◽  
Qi Yang ◽  
Xinxin Li ◽  
...  

Drug resistance in Plasmodium vivax may pose a challenge to malaria elimination. Previous studies have found that P. vivax has a decreased sensitivity to antimalarial drugs in some areas of the Greater Mekong Sub-region. This study aims to investigate the ex vivo drug susceptibilities of P. vivax isolates from the China–Myanmar border and genetic variations of resistance-related genes. A total of 46 P. vivax clinical isolates were assessed for ex vivo susceptibility to seven antimalarial drugs using the schizont maturation assay. The medians of IC50 (half-maximum inhibitory concentrations) for chloroquine, artesunate, and dihydroartemisinin from 46 parasite isolates were 96.48, 1.95, and 1.63 nM, respectively, while the medians of IC50 values for piperaquine, pyronaridine, mefloquine, and quinine from 39 parasite isolates were 19.60, 15.53, 16.38, and 26.04 nM, respectively. Sequence polymorphisms in pvmdr1 (P. vivax multidrug resistance-1), pvmrp1 (P. vivax multidrug resistance protein 1), pvdhfr (P. vivax dihydrofolate reductase), and pvdhps (P. vivax dihydropteroate synthase) were determined by PCR and sequencing. Pvmdr1 had 13 non-synonymous substitutions, of which, T908S and T958M were fixed, G698S (97.8%) and F1076L (93.5%) were highly prevalent, and other substitutions had relatively low prevalences. Pvmrp1 had three non-synonymous substitutions, with Y1393D being fixed, G1419A approaching fixation (97.8%), and V1478I being rare (2.2%). Several pvdhfr and pvdhps mutations were relatively frequent in the studied parasite population. The pvmdr1 G698S substitution was associated with a reduced sensitivity to chloroquine, artesunate, and dihydroartemisinin. This study suggests the possible emergence of P. vivax isolates resistant to certain antimalarial drugs at the China–Myanmar border, which demands continuous surveillance for drug resistance.



Author(s):  
Biraj Shrestha ◽  
Zalak Shah ◽  
Andrew P Morgan ◽  
Piyaporn Saingam ◽  
Chaiyaporn Chaisatit ◽  
...  

Abstract Background Newly emerged mutations within the Plasmodium falciparum chloroquine resistance transporter (PfCRT) can confer piperaquine resistance in the absence of amplified plasmepsin II (pfpm2). In this study, we estimated the prevalence of co-circulating piperaquine resistance mutations in P. falciparum isolates collected in northern Cambodia from 2009-2017. Methods The sequence of pfcrt was determined for 410 P. falciparum isolates using PacBio amplicon sequencing or whole genome sequencing. Quantitative PCR was used to estimate pfpm2 and pfmdr1 copy number. Results Newly emerged PfCRT mutations increased in prevalence after the change to dihydroartemisinin-piperaquine in 2010, with >98% of parasites harboring these mutations by 2017. After 2014, the prevalence of PfCRT F145I declined, being out-competed by parasites with less resistant, but more fit PfCRT alleles. After the change to artesunate-mefloquine, the prevalence of parasites with amplified pfpm2 decreased, with nearly half of piperaquine-resistant PfCRT mutants having single copy pfpm2. Conclusions The large proportion of PfCRT mutants that lack pfpm2 amplification emphasizes the importance of including PfCRT mutations as part of molecular surveillance for piperaquine resistance in this region. Likewise, it is critical to monitor for amplified pfmdr1 in these PfCRT mutants, as increased mefloquine pressure could lead to mutants resistant to both drugs.



PLoS ONE ◽  
2012 ◽  
Vol 7 (1) ◽  
pp. e30213 ◽  
Author(s):  
Chim W. Chan ◽  
Rita Spathis ◽  
Dana M. Reiff ◽  
Stacy E. McGrath ◽  
Ralph M. Garruto ◽  
...  


2019 ◽  
Vol 16 (3) ◽  
pp. 291-300
Author(s):  
Saumya K. Patel ◽  
Mohd Athar ◽  
Prakash C. Jha ◽  
Vijay M. Khedkar ◽  
Yogesh Jasrai ◽  
...  

Background: Combined in-silico and in-vitro approaches were adopted to investigate the antiplasmodial activity of Catharanthus roseus and Tylophora indica plant extracts as well as their isolated components (vinblastine, vincristine and tylophorine). </P><P> Methods: We employed molecular docking to prioritize phytochemicals from a library of 26 compounds against Plasmodium falciparum multidrug-resistance protein 1 (PfMDR1). Furthermore, Molecular Dynamics (MD) simulations were performed for a duration of 10 ns to estimate the dynamical structural integrity of ligand-receptor complexes. </P><P> Results: The retrieved bioactive compounds viz. tylophorine, vinblastin and vincristine were found to exhibit significant interacting behaviour; as validated by in-vitro studies on chloroquine sensitive (3D7) as well as chloroquine resistant (RKL9) strain. Moreover, they also displayed stable trajectory (RMSD, RMSF) and molecular properties with consistent interaction profile in molecular dynamics simulations. </P><P> Conclusion: We anticipate that the retrieved phytochemicals can serve as the potential hits and presented findings would be helpful for the designing of malarial therapeutics.



2020 ◽  
Vol 44 (1) ◽  
Author(s):  
Iyabo Adepeju Simon-Oke ◽  
Adeola Olanireti Ade-Alao ◽  
Foluso Ologundudu

Abstract Background The study evaluated the prevalence of malaria and Plasmodium falciparum chloroquine resistance transporter gene (PfCRT) in HIV patients attending Specialist Hospital, Akure. This study was carried out between April and June 2019. Three hundred and seventeen (317) patients attending the antiretroviral clinic (ART) were involved, out of which 89 (28.08%) were males and 228 (71.92%) were females. HIV test was done using the Unigold® HIV test kit, malaria test was done using thick and thin blood smear, CD4 test was done using the Partec® CD4 counter and PCR was used to detect the presence of plasmodium falciparum mutant gene. The data obtained from this analysis was subjected to Pearson’s Chi-square test. Results The overall result showed low prevalence of malaria (23.03%) in the sampled patients. Highest malaria prevalence (31.0%) was recorded in HIV patients with CD4 count between 200–500 cells/μl of blood, with the males recording 24.7% malaria prevalence. The age group 20–29 years recorded the highest prevalence of 27.3%. A higher prevalence 91.1% of PfCRT gene in HIV-positive and (40.0%) in HIV-negative patients was recorded with 100% prevalence in patients with CD4 count ≤ 200. This shows that the low prevalence of malaria recorded in this study could be credited to good health-seeking attitude of HIV patients and the upscale of HIV care and treatment centres. Conclusion The high prevalence of PfCRT gene shows that treatment of malaria with chloroquine is still being practised despite the availability of artemisinin-based combination therapy (ACTs) as the recommended regimen for malaria treatment.



2014 ◽  
Vol 13 (1) ◽  
Author(s):  
Reginald A Kavishe ◽  
Petro Paulo ◽  
Robert D Kaaya ◽  
Akili Kalinga ◽  
Marco van Zwetselaar ◽  
...  




Genetics ◽  
2003 ◽  
Vol 164 (2) ◽  
pp. 685-697 ◽  
Author(s):  
Edward K Kentner ◽  
Michael L Arnold ◽  
Susan R Wessler

Abstract The Louisiana iris species Iris brevicaulis and I. fulva are morphologically and karyotypically distinct yet frequently hybridize in nature. A group of high-copy-number TY3/gypsy-like retrotransposons was characterized from these species and used to develop molecular markers that take advantage of the abundance and distribution of these elements in the large iris genome. The copy number of these IRRE elements (for iris retroelement), is ∼1 × 105, accounting for ∼6–10% of the ∼10,000-Mb haploid Louisiana iris genome. IRRE elements are transcriptionally active in I. brevicaulis and I. fulva and their F1 and backcross hybrids. The LTRs of the elements are more variable than the coding domains and can be used to define several distinct IRRE subfamilies. Transposon display or S-SAP markers specific to two of these subfamilies have been developed and are highly polymorphic among wild-collected individuals of each species. As IRRE elements are present in each of 11 iris species tested, the marker system has the potential to provide valuable comparative data on the dynamics of retrotransposition in large plant genomes.



Sign in / Sign up

Export Citation Format

Share Document