scholarly journals Electrode Material as Anode for Improving the Electrochemical Performance of Microbial Fuel Cells

2021 ◽  
Author(s):  
Asim Ali Yaqoob ◽  
Mohamad Nasir Mohamad Ibrahim ◽  
Khalid Umar

The energy generation without causing environmental pollution is a unique idea to make a better survival for human beings. In this regard, microbial fuel cells (MFCs) have been considered to be eco-friendly and efficient technology to produce renewable energy. The operations and functioning of MFCs technology were affected by many factors but the electrodes are the most essential and significant aspects in MFCs. Moreover, a wide variety of electrodes and MFCs configurations have been developed to enhance the electrochemical performance of MFCs. The carbon materials (graphite, graphene etc.) were commonly used for the electrode fabrication, due to some unique properties such as high conductivity, good thermal stability, high surface area, good mechanical power etc. In this chapter, different electrode materials, used for anode fabrication were summarized to reveal the performance/efficiency toward the generation of electricity. Finally, the electrochemical characterizations tool, current challenges, and future perspectives of the electrode in MFCs were discussed briefly.

2009 ◽  
Vol 59 (3) ◽  
pp. 557-563 ◽  
Author(s):  
Daqian Jiang ◽  
Baikun Li

In this study, two novel electrode materials were tested to enhance bacterial adhesion and increase power production in microbial fuel cells (MFCs). Polypyrrole (PPy), a nontoxic conductive polymer, was coated on the plain carbon cloth electrodes to bridge with the biopolymers on bacterial cell membranes and to improve the power production. The PPy-coated electrodes increased the initial power from 20 mW/m2 to 160mW/m2 in the first 4-day period. But there was no clear difference between two PPy coating thicknesses (5-cycle coating and 50-cycle coating) in terms of the bacterial adhesion and power production. Granular activated carbon (GAC), a commonly used bacterial support material with high surface area, exhibited a good bacterial adhesion and high power output. GAC-SCMFCs (single chamber MFCs) generated 5W/m3 and maintained the peak power for 6 days. Compared with plain carbon cloth electrodes, GAC-SCMFCs had lower internal resistances and higher power generations. However, GAC-SCMFCs had lower columbic efficiency and energy conversion efficiency than the conventional two chamber MFCs.


2016 ◽  
Vol 4 (17) ◽  
pp. 6342-6349 ◽  
Author(s):  
Meiqiong Chen ◽  
Yinxiang Zeng ◽  
Yitong Zhao ◽  
Minghao Yu ◽  
Faliang Cheng ◽  
...  

Three dimensional graphene-based frameworks (3DGFs) hold great promise for microbial fuel cells (MFCs) due to their macroporous structure, outstanding electrical conductivity, high surface area and prominent biocompatibility.


2020 ◽  
Vol 49 (4) ◽  
pp. 1157-1166 ◽  
Author(s):  
Vijayakumar Elayappan ◽  
Pragati A. Shinde ◽  
Ganesh Kumar Veerasubramani ◽  
Seong Chan Jun ◽  
Hyun Sung Noh ◽  
...  

Electrode materials exhibiting nanostructural design, high surface area, tunable pore size, and efficient ion diffusion/transportation are essential for achieving improved electrochemical performance.


1995 ◽  
Vol 393 ◽  
Author(s):  
Oliver Chyan ◽  
Jin-Jian Chen ◽  
Min Liu ◽  
Michael G. Richmond ◽  
Kaiyuan Yang

ABSTRACTRecent advances in high surface area (HSA) electrode materials have played an important role in the development of high-performance batteries and fuel cells. HSA electrodes can significantly increase the power-density of batteries and fuel cells by enhancing the heterogeneous electrochemical reaction rate and concurrently reducing battery and fuel cell size and weight. The compactness of HSA electrodes can also reduce the ohmic potential drop, which has the clear advantage of reducing power losses. This paper reports results on utilizing direct metallization of porous substrates to prepare new HSA electrode materials. Specifically, Nickel HSA electrode materials, relevant to the Ni-Cd and metal-hydride rechargeable batteries, were prepared on porous carbon substrates by direct thermolysis of organometallic precursors and/or electroless Ni plating. SEM and XPS characterization results indicate a Ni metallic film was conformally coated over the porous carbon skeleton. The real electroactive areas were determined electrochemically in NaOH solution and results will be discussed in correlation with the metallization conditions.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 538
Author(s):  
Beata Kurc ◽  
Marita Pigłowska ◽  
Łukasz Rymaniak ◽  
Paweł Fuć

Over the past decades, the application of new hybrid materials in energy storage systems has seen significant development. The efforts have been made to improve electrochemical performance, cyclic stability, and cell life. To achieve this, attempts have been made to modify existing electrode materials. This was achieved by using nano-scale materials. A reduction of size enabled an obtainment of changes of conductivity, efficient energy storage and/or conversion (better kinetics), emergence of superparamagnetism, and the enhancement of optical properties, resulting in better electrochemical performance. The design of hybrid heterostructures enabled taking full advantage of each component, synergistic effect, and interaction between components, resulting in better cycle stability and conductivity. Nowadays, nanocomposite has ended up one of the foremost prevalent materials with potential applications in batteries, flexible cells, fuel cells, photovoltaic cells, and photocatalysis. The main goal of this review is to highlight a new progress of different hybrid materials, nanocomposites (also polymeric) used in lithium-ion (LIBs) and sodium-ion (NIBs) cells, solar cells, supercapacitors, and fuel cells and their electrochemical performance.


RSC Advances ◽  
2021 ◽  
Vol 11 (33) ◽  
pp. 20601-20611
Author(s):  
Md. Mijanur Rahman ◽  
Kenta Inaba ◽  
Garavdorj Batnyagt ◽  
Masato Saikawa ◽  
Yoshiki Kato ◽  
...  

Herein, we demonstrated that carbon-supported platinum (Pt/C) is a low-cost and high-performance electrocatalyst for polymer electrolyte fuel cells (PEFCs).


2021 ◽  
Vol 308 ◽  
pp. 01019
Author(s):  
Haoran Kong ◽  
Jiarong Liu ◽  
Yu Yue

The selection of oxygen reduction reaction (ORR) catalysts plays a key role in enhancing the performance of proton exchange membrane fuel cells (PEMFCs). To optimize the energy conversion technology in PEMFCs and improve the cost-effectiveness of ORR catalysts, atomically dispersed metal-nitrogen-carbon (M-N-C) catalyst is regarded as one of the most promising materials to replace Pt-based catalysts. In this review, we summarize the advantages of atomically dispersed M-N-C catalysts in both physical and chemical properties, including controllable dimensions, ease of accessibility, high surface area and excellent conductivity. Additionally, the unique merits of their cost-effectiveness are also described by a concise comparison with other ORR catalysts. Subsequently, some of its main synthesis methods are based on the most commonly used zeolitic imidazolate framework (ZIF) precursor. Several other precursors involve carbon, nitrogen, and one or more active transition metals (mainly iron or cobalt) are introduced briefly. Although there are a variety of synthesis methods, all these methods are in line with pyrolysis technology. Then, the recent advancements of atomically dispersed M-N-C catalysts related to their development and application of Fe-N-C, Mn-N-C, and Co-N-C catalysts are comprehensively described. Finally, based on some common M-N-C catalysts, many improvement ideas are also proposed. The focus is on how to control the negative reaction in Fe-N-C catalysts, improve the activity of Co-N-C catalysts and Mn-N-C catalysts, and find more suitable transition metal materials to prepare M-N-C catalysts.


Molecules ◽  
2018 ◽  
Vol 23 (7) ◽  
pp. 1760 ◽  
Author(s):  
Fernanda Guerra ◽  
Mohamed Attia ◽  
Daniel Whitehead ◽  
Frank Alexis

Environmental remediation relies mainly on using various technologies (e.g., adsorption, absorption, chemical reactions, photocatalysis, and filtration) for the removal of contaminants from different environmental media (e.g., soil, water, and air). The enhanced properties and effectiveness of nanotechnology-based materials makes them particularly suitable for such processes given that they have a high surface area-to-volume ratio, which often results in higher reactivity. This review provides an overview of three main categories of nanomaterials (inorganic, carbon-based, and polymeric-based materials) used for environmental remediation. The use of these nanomaterials for the remediation of different environmental contaminants—such as heavy metals, dyes, chlorinated organic compounds, organophosphorus compounds, volatile organic compounds, and halogenated herbicides—is reviewed. Various recent examples are extensively highlighted focusing on the materials and their applications.


Sign in / Sign up

Export Citation Format

Share Document