scholarly journals Unlocking Pharmacological and Therapeutic Potential of Hyacinth Bean (Lablab purpureus L.): Role of OMICS Based Biology, Biotic and Abiotic Elicitors

2021 ◽  
Author(s):  
Krishna Kumar Rai ◽  
Nagendra Rai ◽  
Shashi Pandey-Rai

Hyacinth bean also known as Indian bean is multipurpose legume crops consumed both as food by humans and as forage by animals. Being a rich source of protein, it also produces distinct secondary metabolites such as flavonoids, phenols and tyrosinase which not only help strengthened plant’s own innate immunity against abiotic/biotrophic attackers but also play important therapeutic role in the treatment of various chronic diseases. However, despite its immense therapeutic and nutritional attributes in strengthening food, nutrition and therapeutic security in many developing countries, it is still considered as an “orphan crop” for unravelling its genetic potential and underlying molecular mechanisms for enhancing secondary metabolite production. Several lines of literatures have well documented the use of OMICS based techniques and biotic and abiotic elicitors for stimulating secondary metabolite production particularly in model as well as in few economically important crops. However, only limited reports have described their application for stimulating secondary metabolite production in underutilised crops. Therefore, the present chapter will decipher different dimensions of multi-omics tools and their integration with other conventional techniques (biotic and abiotic elicitors) for unlocking hidden genetic potential of hyacinth bean for elevating the production of secondary metabolites having pharmaceutical and therapeutic application. Additionally, the study will also provide valuable insights about how these advance OMICS tools can be successfully exploited for accelerating functional genomics and breeding research for unravelling their hidden pharmaceutical and therapeutic potential thereby ensuring food and therapeutic security for the betterment of mankind.

2012 ◽  
Vol 10 (2) ◽  
pp. 120 ◽  
Author(s):  
Risa Nofiani

Marine microorganism is one of biologically active potential resources of secondary metabolites. Its potency areso promising that the knowledge of how its secondary metabolite occured need to be studied and collected. Thoseknowledges will enable further study is improving secondary metabolite production in the laboratory. In nature,secondary metabolites synthesis occur when there are effect of both biotic and abiotic factors such as sea waterand microbe symbiosis with other living materials. When this is explained in metabolic pathways, secondarymetabolite synthesis affected by available nutrient and regulated by autoinducer molecules through quorum sensingmechanism


2021 ◽  
Vol 11 (15) ◽  
pp. 6668
Author(s):  
Sameer Hasan Qari ◽  
Ibrahim Tarbiyyah

Global development has generated a plethora of unfavorable and adverse environmental factors for the living organisms in the ecosystem. Plants are sessile organisms, and they are crucial to sustain life on earth. Since plants are sessile, they face a great number of environmental challenges related to abiotic stresses, such as temperature fluctuation, drought, salinity, flood and metal contamination. Salinity and drought are considered major abiotic stresses that negatively affect the plants’ growth and production of useful content. However, plants have evolved various molecular mechanisms to increase their tolerance to these environmental stresses. There is a whole complex system of communication (cross-talk) through massive signaling cascades that are activated and modulated in response to salinity and drought. Secondary metabolites are believed to play significant roles in the plant’s response and resistance to salinity and drought stress. Until recently, attempts to unravel the biosynthetic pathways were limited mainly due to the inadequate plant genomics resources. However, recent advancements in generating high-throughput “omics” datasets, computational tools and functional genomics approach integration have aided in the elucidation of biosynthetic pathways of many plant bioactive metabolites. This review gathers comprehensive knowledge of plants’ complex system that is involved in the response and resistance to salinity and water deficit stresses as abiotic stress. Additionally, it offers clues in determining the genes involved in this complex and measures its activity. It covers basic information regarding the signaling molecules involved in salinity and drought resistance and how plant hormones regulate the cross-talking mechanism with emphasis on transcriptional activity. Moreover, it discusses many studies that illustrate the relationship between salinity and drought and secondary metabolite production. Furthermore, several transcriptome analysis research papers of medicinal plants are illustrated. The aim of this review is to be a key for any researcher that is aspiring to study the relationship between salinity and drought stresses and secondary metabolite production at the transcriptome and transcription level.


2021 ◽  
Vol 2 ◽  
Author(s):  
Trong T. Dao ◽  
Kate M. J. de Mattos-Shipley ◽  
Ian M. Prosser ◽  
Katherine Williams ◽  
Marija K. Zacharova ◽  
...  

The use of filamentous fungi as cellular factories, where natural product pathways can be refactored and expressed in a host strain, continues to aid the field of natural product discovery. Much work has been done to develop host strains which are genetically tractable, and for which there are multiple selectable markers and controllable expression systems. To fully exploit these strains, it is beneficial to understand their natural metabolic capabilities, as such knowledge can rule out host metabolites from analysis of transgenic lines and highlight any potential interplay between endogenous and exogenous pathways. Additionally, once identified, the deletion of secondary metabolite pathways from host strains can simplify the detection and purification of heterologous compounds. To this end, secondary metabolite production in Aspergillus oryzae strain NSAR1 has been investigated via the deletion of the newly discovered negative regulator of secondary metabolism, mcrA (multicluster regulator A). In all ascomycetes previously studied mcrA deletion led to an increase in secondary metabolite production. Surprisingly, the only detectable phenotypic change in NSAR1 was a doubling in the yields of kojic acid, with no novel secondary metabolites produced. This supports the previous claim that secondary metabolite production has been repressed in A. oryzae and demonstrates that such repression is not McrA-mediated. Strain NSAR1 was then modified by employing CRISPR-Cas9 technology to disrupt the production of kojic acid, generating the novel strain NSARΔK, which combines the various beneficial traits of NSAR1 with a uniquely clean secondary metabolite background.


Author(s):  
Tuncay Çalışkan ◽  
Rüştü Hatipoğlu ◽  
Saliha Kırıcı

Plant secondary metabolites are a group of organic compounds produced by plants to interact with biotic and abiotic factors and for the establishment of defence mechanism. Secondary metabolites are classified based on their biosynthetic origin and chemical structure. They have been used as pharmaceutical, agrochemical, flavours, fragrances, colours and food additives. Secondary metabolites are traditionally produced from the native grown or field grown plants. However, this conventional approach has some disadvantages such as low yield, instability of secondary metabolite contents of the plants due to geographical, seasonal and environmental variations, need for land and heavy labour to grow plants. Therefore, plant cell and organ cultures have emerged as an alternative to plant growing under field conditions for secondary metabolite production. In this literature review, present state of secondary metabolite production through plant cell and organ cultures, its problems as well as solutions of the problems were discussed.


2012 ◽  
Vol 7 (6) ◽  
pp. 1934578X1200700 ◽  
Author(s):  
Bartholomeu A. Barros-Filho ◽  
Maria C. F. de Oliveira ◽  
Jair Mafezoli ◽  
Francisco G. Barbosa ◽  
Edson Rodrigues-Filho

The basidiomycete Lentinus strigellus was cultivated in three different culture media and the secondary metabolites produced under different culture conditions were isolated and identified. When cultivated in a liquid medium with peptone, L. strigellus afforded the benzopyrans, 2,2-dimethyl-6-methoxychroman-4-one, 4-hydroxy-2,2-dimethyl-6-methoxychromane and (3 R,4 S)-3,4-dihydroxy-2,2-dimethyl-6-methoxychromane. The indole alkaloid echinuline and the anthraquinone fiscione, both unprecedented for the genus Lentinus, were isolated from the mycelium of the fungus. When cultured in Czapek medium enriched with potato broth, the fungus afforded the same benzopyrans except (3 S,4 S)-3,4-dihydroxy-2,2-dimethyl-6-methoxychromane. Panepoxydone and isopanepoxydone were also isolated when the microorganism was grown in Czapek medium.


mSystems ◽  
2019 ◽  
Vol 4 (4) ◽  
Author(s):  
Inge Kjærbølling ◽  
Tammi Vesth ◽  
Mikael R. Andersen

Species belonging to the Aspergillus genus are known to produce a large number of secondary metabolites; some of these compounds are used as pharmaceuticals, such as penicillin, cyclosporine, and statin. With whole-genome sequencing, it became apparent that the genetic potential for secondary metabolite production is much larger than expected. As an increasing number of species are whole-genome sequenced, thousands of secondary metabolite genes are predicted, and the question of how to selectively identify novel bioactive compounds from this information arises. To address this question, we have created a pipeline to predict genes involved in the production of bioactive compounds based on a resistance gene hypothesis approach.


2018 ◽  
Vol 84 (19) ◽  
Author(s):  
Brett C. Covington ◽  
Jeffrey M. Spraggins ◽  
Audrey E. Ynigez-Gutierrez ◽  
Zachary B. Hylton ◽  
Brian O. Bachmann

ABSTRACT Microorganisms within microbial communities respond to environmental challenges by producing biologically active secondary metabolites, yet the majority of these small molecules remain unidentified. We have previously demonstrated that secondary metabolite biosynthesis in actinomycetes can be activated by model environmental chemical and biological stimuli, and metabolites can be identified by comparative metabolomics analyses under different stimulus conditions. Here, we surveyed the secondary metabolite productivity of a group of 20 phylogenetically diverse actinobacteria isolated from hypogean (cave) environments by applying a battery of stimuli consisting of exposure to antibiotics, metals, and mixed microbial culture. Comparative metabolomics was used to reveal secondary metabolite responses from stimuli. These analyses revealed substantial changes in global metabolomic dynamics, with over 30% of metabolomic features increasing more than 10-fold under at least one stimulus condition. Selected features were isolated and identified via nuclear magnetic resonance (NMR), revealing several known secondary metabolite families, including the tetarimycins, aloesaponarins, hypogeamicins, actinomycins, and propeptins. One prioritized metabolite was identified to be a previously unreported aminopolyol polyketide, funisamine, produced by a cave isolate of Streptosporangium when exposed to mixed culture. The production of funisamine was most significantly increased in mixed culture with Bacillus species. The biosynthetic gene cluster responsible for the production of funisamine was identified via genomic sequencing of the producing strain, Streptosporangium sp. strain KDCAGE35, which facilitated a deduction of its biosynthesis. Together, these data demonstrate that comparative metabolomics can reveal the stimulus-induced production of natural products from diverse microbial phylogenies. IMPORTANCE Microbial secondary metabolites are an important source of biologically active and therapeutically relevant small molecules. However, much of this active molecular diversity is challenging to access due to low production levels or difficulty in discerning secondary metabolites within complex microbial extracts prior to isolation. Here, we demonstrate that ecological stimuli increase secondary metabolite production in phylogenetically diverse actinobacteria isolated from understudied hypogean environments. Additionally, we show that comparative metabolomics linking stimuli to metabolite response data can effectively reveal secondary metabolites within complex biological extracts. This approach highlighted secondary metabolites in almost all observed natural product classes, including low-abundance analogs of biologically relevant metabolites, as well as a new linear aminopolyol polyketide, funisamine. This study demonstrates the generality of activating stimuli to potentiate secondary metabolite production across diverse actinobacterial genera.


2014 ◽  
Vol 9 (7) ◽  
pp. 686-698 ◽  
Author(s):  
Vijay Kumar ◽  
Shailesh Singh ◽  
Rajib Bandopadhyay ◽  
Madan Sharma ◽  
Sheela Chandra

AbstractAn efficient protocol of plant regeneration through direct and indirect organogenesis in Swertia chirayita was developed. Explants cultured on Murashige and Skoog medium supplemented with 2,4-D (0.5 mg L−1) with combination of Kinetin (0.5 mg L−1) showed the highest frequency (84%) of callusing and 1.0mg L−1 6-benzyladenine (BA) in combination with (100 mg L−1) Adenine sulphate (Ads) + (0.1 mg L−1) Indole acetic acid (IAA) was excellent for maximum adventitious shoot (12.69 ± 1.30) formation in four week of culture. A maximum number of (7.14 ± 0.99) shoots were developed per leaf explants through direct organogenesis. The highest frequency of rooting (11.46 ± 1.56) was observed on MS medium augmented with IAA (1.0 mg L−1). Well-rooted shoots transferred to plastic pots containing a soilrite: sand mix and then moved to the greenhouse for further growth and development. Four major secondary metabolites were analyzed and quantified using high performance liquid chromatography. Amount of secondary metabolites was found significantly higher, in in vitro plantlets compared to in vivo plantlets and callus raised from S. chirayita. Higher heavy metal accumulation in in vitro as compared to in vivo plantlets correlates higher secondary metabolite production supporting that they play regulatory role in influencing the plant secondary metabolism.


2005 ◽  
Vol 243 (1) ◽  
pp. 293-301 ◽  
Author(s):  
Brendan P. Burns ◽  
Alexander Seifert ◽  
Falicia Goh ◽  
Francesco Pomati ◽  
Anne-Dorothee Jungblut ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document