scholarly journals Performance Evaluation of Waste Materials for the Treatment of Acid Mine Drainage to Remove Heavy Metals and Sulfate

2021 ◽  
Author(s):  
Satish Chandra Bhuyan ◽  
Subrat Kumar Bhuyan ◽  
Himanshu Bhushan Sahu

Acid Mine Drainage (AMD) is the most severe environmental problem facing the mining sector in the current scenario because of low pH and high pollutants concentration. AMD contains a high amount of sulphate viz. pyrite, FeS2, and to a lesser extent pyrrhotite and heavy metal ions, contaminate both surface water and groundwater. To treat AMD, extensive research projects have been initiated by governments, the mining industry, universities, and research establishments. The environmental impact of AMD can be minimized at these basic levels; prevention should be taken to control the infiltration of groundwater to the pollution site and control the acid-generating process. There are some conventional active methods to treat AMD, such as compost reactor and packed bed iron-oxidation bioreactors; however, these methods have associated with costly material and high maintenance cost, which increases the cost of the entire treatment. In an alternative, the use of low-cost materials such as fly ash, metallurgical slag, zero-valent iron (ZVI), cement kiln dust (CKD), and organic waste such as peat humic agent (PHA), rice husk, and eggshell can be a valuable measure for economic viability to treat the metal-rich wastewater.

Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 620
Author(s):  
Hugo Lucas ◽  
Srecko Stopic ◽  
Buhle Xakalashe ◽  
Sehliselo Ndlovu ◽  
Bernd Friedrich

Acid mine drainage (AMD) and red mud (RM) are frequently available in the metallurgical and mining industry. Treating AMD solutions require the generation of enough alkalinity to neutralize the acidity excess. RM, recognized as a waste generating high alkalinity solution when it is in contact with water, was chosen to treat AMD from South Africa at room temperature. A German and a Greek RM have been evaluated as a potential low-cost material to neutralize and immobilize harmful chemical ions from AMD. Results showed that heavy metals and other hazardous elements such as As, Se, Cd, and Zn had been immobilized in the mineral phase. According to European environmental standards, S and Cr, mainly present in RM, were the only two elements not immobilized below the concentration established for inert waste.


2017 ◽  
Vol 83 (7) ◽  
Author(s):  
Christen L. Grettenberger ◽  
Alexandra R. Pearce ◽  
Kyle J. Bibby ◽  
Daniel S. Jones ◽  
William D. Burgos ◽  
...  

ABSTRACT Acid mine drainage (AMD) is a major environmental problem affecting tens of thousands of kilometers of waterways worldwide. Passive bioremediation of AMD relies on microbial communities to oxidize and remove iron from the system; however, iron oxidation rates in AMD environments are highly variable among sites. At Scalp Level Run (Cambria County, PA), first-order iron oxidation rates are 10 times greater than at other coal-associated iron mounds in the Appalachians. We examined the bacterial community at Scalp Level Run to determine whether a unique community is responsible for the rapid iron oxidation rate. Despite strong geochemical gradients, including a >10-fold change in the concentration of ferrous iron from 57.3 mg/liter at the emergence to 2.5 mg/liter at the base of the coal tailings pile, the bacterial community composition was nearly constant with distance from the spring outflow. Scalp Level Run contains many of the same taxa present in other AMD sites, but the community is dominated by two strains of Ferrovum myxofaciens, a species that is associated with high rates of Fe(II) oxidation in laboratory studies. IMPORTANCE Acid mine drainage pollutes more than 19,300 km of rivers and streams and 72,000 ha of lakes worldwide. Remediation is frequently ineffective and costly, upwards of $100 billion globally and nearly $5 billion in Pennsylvania alone. Microbial Fe(II) oxidation is more efficient than abiotic Fe(II) oxidation at low pH (P. C. Singer and W. Stumm, Science 167:1121–1123, 1970, https://doi.org/10.1126/science.167.3921.1121 ). Therefore, AMD bioremediation could harness microbial Fe(II) oxidation to fuel more-cost-effective treatments. Advances will require a deeper understanding of the ecology of Fe(II)-oxidizing microbial communities and the factors that control their distribution and rates of Fe(II) oxidation. We investigated bacterial communities that inhabit an AMD site with rapid Fe(II) oxidation and found that they were dominated by two operational taxonomic units (OTUs) of Ferrovum myxofaciens, a taxon associated with high laboratory rates of iron oxidation. This research represents a step forward in identifying taxa that can be used to enhance cost-effective AMD bioremediation.


2017 ◽  
Vol 8 (12) ◽  
pp. 4457-4466 ◽  
Author(s):  
S. Nfissi ◽  
S. Alikouss ◽  
Y. Zerhouni ◽  
R. Hakkou ◽  
M. Benzaazoua ◽  
...  

2020 ◽  
Vol Special Issue (1) ◽  

Acid Mine Drainage (AMD) exists as a phenomenon that involves the release of acidic water and metal conjugates, in and around mines, degrading the surrounding water environment. A real-time mining effluent is treated using low-cost adsorption technology using Combined Vegetable Waste Carbon (CVWC) as sorbent. Batch sorption was reviewed to know the effect of process factors on the removal of Cadmium (Cd), Zinc (Zn), and Iron (Fe). A two-level CCD (Central Composite Design) with three factors was adopted in the optimization of process factors. Also, the same factors were considered to review the ANNs (Artificial Neural Networks), model. A comparative statistical analysis was performed for the experimental data based on RMSE and R2 values in both RSM (Response Surface Methodology) and ANNs models. This study revealed that the ANNs model was well fit compared to RSM and this would probably reduce the experimental trials thereby reducing cumbersome calculations.


2020 ◽  
Vol 86 (24) ◽  
Author(s):  
Denise M. Akob ◽  
Michelle Hallenbeck ◽  
Felix Beulig ◽  
Maria Fabisch ◽  
Kirsten Küsel ◽  
...  

ABSTRACT Natural attenuation of heavy metals occurs via coupled microbial iron cycling and metal precipitation in creeks impacted by acid mine drainage (AMD). Here, we describe the isolation, characterization, and genomic sequencing of two iron-oxidizing bacteria (FeOB) species: Thiomonas ferrovorans FB-6 and Thiomonas metallidurans FB-Cd, isolated from slightly acidic (pH 6.3), Fe-rich, AMD-impacted creek sediments. These strains precipitated amorphous iron oxides, lepidocrocite, goethite, and magnetite or maghemite and grew at a pH optimum of 5.5. While Thiomonas spp. are known as mixotrophic sulfur oxidizers and As oxidizers, the FB strains oxidized Fe, which suggests they can efficiently remove Fe and other metals via coprecipitation. Previous evidence for Thiomonas sp. Fe oxidation is largely ambiguous, possibly because of difficulty demonstrating Fe oxidation in heterotrophic/mixotrophic organisms. Therefore, we also conducted a genomic analysis to identify genetic mechanisms of Fe oxidation, other metal transformations, and additional adaptations, comparing the two FB strain genomes with 12 other Thiomonas genomes. The FB strains fall within a relatively novel group of Thiomonas strains that includes another strain (b6) with solid evidence of Fe oxidation. Most Thiomonas isolates, including the FB strains, have the putative iron oxidation gene cyc2, but only the two FB strains possess the putative Fe oxidase genes mtoAB. The two FB strain genomes contain the highest numbers of strain-specific gene clusters, greatly increasing the known Thiomonas genetic potential. Our results revealed that the FB strains are two distinct novel species of Thiomonas with the genetic potential for bioremediation of AMD via iron oxidation. IMPORTANCE As AMD moves through the environment, it impacts aquatic ecosystems, but at the same time, these ecosystems can naturally attenuate contaminated waters via acid neutralization and catalyzing metal precipitation. This is the case in the former Ronneburg uranium-mining district, where AMD impacts creek sediments. We isolated and characterized two iron-oxidizing Thiomonas species that are mildly acidophilic to neutrophilic and that have two genetic pathways for iron oxidation. These Thiomonas species are well positioned to naturally attenuate AMD as it discharges across the landscape.


Minerals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 596 ◽  
Author(s):  
Alex Kalonji-Kabambi ◽  
Bruno Bussière ◽  
Isabelle Demers

The production of solid mine wastes is an integral part of the extraction and metallurgical processing of ores. The reclamation of highly reactive mine waste, with low neutralizing potential, is still a significant challenge for the mining industry, particularly when natural soils are not available close to the site. Some solid mine wastes present interesting hydro-geotechnical properties which can be taken advantage of, particularly for being used in reclamation covers to control acid mine drainage. The main objective of this research was to evaluate the use of mining materials (i.e., tailings and waste rock) in a cover with capillary barrier effects (CCBE) to prevent acid mine drainage (AMD) from highly reactive tailings. The first part of the project reproduced in this article involves context and laboratory validation of mining materials as suitable for a CCBE, while the companion paper reports laboratory and field results of cover systems made with mining materials. The main conclusions of the Part 1 of this study were that the materials studied (low sulfide tailings and waste rocks) had the appropriate geochemical and hydrogeological properties for use as cover materials in a CCBE. Results also showed that the cover mining materials are not acid-generating and that the LaRonde tailings are highly reactive with pH close to 2, with high concentrations of metals and sulfates.


1988 ◽  
Vol 1988 (1) ◽  
pp. 131-135 ◽  
Author(s):  
T. C. Jageman ◽  
R. A. Yokley ◽  
G. W. Heunisch

Sign in / Sign up

Export Citation Format

Share Document