scholarly journals Application of Fiber Optics in Bio-Sensing

2021 ◽  
Author(s):  
Lokendra Singh ◽  
Niteshkumar Agarwal ◽  
Himnashu Barthwal ◽  
Bhupal Arya ◽  
Taresh Singh

The unique properties of optical fibers such as small size, immunity to electromagnetic radiation, high sensitivity with simpler sensing systems have found their applications from structural monitoring to biomedical sensing. The inclusion of optical transducers, integrated electronics and new immobilization methods, the optical fibers have been used in industrial process, environmental monitoring, food processing and clinical applications. Further, the optical fiber sensing research has also been extended to the area of detection of micro-organisms such as bacteria, viruses, fungi and protozoa. The validation of optical fibers in bio-sensing applications can be observed from the growing number of publications. This chapter provides a brief picture of optical fiber biosensors, their geometries including the necessary procedure for their development. This chapter could be a milestone for the young researchers to establish their laboratory.

1997 ◽  
Vol 3 (S2) ◽  
pp. 845-846
Author(s):  
S. Michael Angel ◽  
H. Trey Skinner ◽  
Brian J. Marquardt

Optical fiber probes are routinely used with optical spectrometers to allow measurements to be made on remotely located samples. In most of these systems, however, the optical fibers are used as non-imaging “light pipes” for the transmission of laser light, and luminescence or Raman signals to and from the sample. Thus, while these systems are suitable for remote spectroscopy, they are limited to single-point measurements. In a recent paper, we showed that a small-diameter (i.e., 350 μm) coherent optical fiber bundle can be combined with an AOTF-based imaging spectrometer for fluorescence and Raman spectral micro-imaging with increased flexibility in terms of sample positioning and in-situ capabilities. The previous paper described the operation of the fiber-optic microimaging probe and AOTF imaging system and showed preliminary Raman and fluorescence images for model compounds with 4 μm resolution. We have extended this work to include a discussion of the lateral and vertical spatial resolution of the fiber-optic microprobe in a non-contact proximity-focused configuration.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 2046 ◽  
Author(s):  
Stephanie Hui Kit Yap ◽  
Kok Ken Chan ◽  
Swee Chuan Tjin ◽  
Ken-Tye Yong

Recently, carbon allotropes have received tremendous research interest and paved a new avenue for optical fiber sensing technology. Carbon allotropes exhibit unique sensing properties such as large surface to volume ratios, biocompatibility, and they can serve as molecule enrichers. Meanwhile, optical fibers possess a high degree of surface modification versatility that enables the incorporation of carbon allotropes as the functional coating for a wide range of detection tasks. Moreover, the combination of carbon allotropes and optical fibers also yields high sensitivity and specificity to monitor target molecules in the vicinity of the nanocoating surface. In this review, the development of carbon allotropes-based optical fiber sensors is studied. The first section provides an overview of four different types of carbon allotropes, including carbon nanotubes, carbon dots, graphene, and nanodiamonds. The second section discusses the synthesis approaches used to prepare these carbon allotropes, followed by some deposition techniques to functionalize the surface of the optical fiber, and the associated sensing mechanisms. Numerous applications that have benefitted from carbon allotrope-based optical fiber sensors such as temperature, strain, volatile organic compounds and biosensing applications are reviewed and summarized. Finally, a concluding section highlighting the technological deficiencies, challenges, and suggestions to overcome them is presented.


2011 ◽  
Vol 71-78 ◽  
pp. 4138-4141
Author(s):  
Wen Cheng Jin ◽  
Juan Wan ◽  
Qing Rong Ding ◽  
Chang Dong Zhou

Continuous optical fiber sensing technique has the advantages of continuous measurement, corrosion preventing, anti-electromagnetic interference and high precision. This paper integrates continuous optical fiber into smart structure system. It combines the advantages of continuous optical fibers with self-adapting function of smart structures. It may have wide uses in engineering. But it is developing. It has some key technologies to be solved, such as the manufacture and embedment technique of special optical fibers, optimized arrangements of fibers, smart identification of the signal, analysis processing for enormous data and realization of self-adapting function.


MRS Bulletin ◽  
2002 ◽  
Vol 27 (5) ◽  
pp. 365-369 ◽  
Author(s):  
D. J. Webb

AbstractThis article provides an overview of the field of optical-fiber sensing, including a brief introduction to the properties of optical fibers that make them suitable for material characterization and monitoring. Some of the recent developments in the field are described, with an emphasis on Bragg grating sensors, multiplexed systems, and chemical sensing, as well as the new field of microstructured fiber.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Noor Azie Azura Mohd Arif ◽  
Dilla Duryha Berhanuddin ◽  
Abang Annuar Ehsan

Optical fibers with high sensitivity are in demand due to their great potential in sensor application. Semiconductors, such as ZnO, are good materials. Using them as a second cladding offers opportunities in realizing next-generation multimaterial fiber optics. COMSOL Multiphysics is used to simulate heterocore macrobend fiber optics with the same curvature radius but different values of refractive index and thickness of ZnO films. The optimum thickness of ZnO films is identified by determining the loss of optical fibers. Macrobend heterocore fiber optics by adding ZnO thin film has been established by simulating and interpreting the relationship in terms of transmission and refractive index in the evanescent field. These results will provide a reliable fundamental to guide the performance in practice.


Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1478 ◽  
Author(s):  
Tao Shen ◽  
Xiaoshuang Dai ◽  
Daqing Zhang ◽  
Wenkang Wang ◽  
Yue Feng

A simple and reliable ultraviolet sensing method with high sensitivity is proposed. ZnO and ZnO composite graphene are successfully prepared by the hydrothermal method. The optical fiber sensor is fabricated by coating the single-mode-taper multimode-single-mode (STMS) with different shapes of ZnO. The effects of the sensitivity of ultraviolet sensors are further investigated. The results show that the sensor with ZnO nanosheets exhibits a higher sensitivity of 357.85 pm/nW·cm−2 for ultraviolet sensing ranging from 0 to 4 nW/cm2. The ultraviolet characteristic of STMS coated flake ZnO composite graphene has been demonstrated with a sensitivity of 427.76 pm/nW·cm−2. The combination of sensitive materials and optical fiber sensing technology provides a novel and convenient platform for ultraviolet detection technology.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 908 ◽  
Author(s):  
Regina Magalhães ◽  
Luis Costa ◽  
Sonia Martin-Lopez ◽  
Miguel Gonzalez-Herraez ◽  
Alejandro F. Braña ◽  
...  

Until recently, the amount of solar irradiance reaching the Earth surface was considered to be a steady value over the years. However, there is increasing observational evidence showing that this quantity undergoes substantial variations over time, which need to be addressed in different scenarios ranging from climate change to solar energy applications. With the growing interest in developing solar energy technology with enhanced efficiency and optimized management, the monitoring of solar irradiance at the ground level is now considered to be a fundamental input in the pursuit of that goal. Here, we propose the first fiber-based distributed sensor able of monitoring ground solar irradiance in real time, with meter scale spatial resolutions over distances of several tens of kilometers (up to 100 km). The technique is based on an optical fiber reflectometry technique (CP-ϕOTDR), which enables real time and long-range high-sensitivity bolometric measurements of solar radiance with a single optical fiber cable and a single interrogator unit. The method is explained and analyzed theoretically. A validation of the method is proposed using a solar simulator irradiating standard optical fibers, where we demonstrate the ability to detect and quantify solar irradiance with less than a 0.1 W/m2 resolution.


2013 ◽  
Vol 416-417 ◽  
pp. 1548-1551
Author(s):  
Zheng Dong Chen

In this paper, a design of optical fiber sensing alarm system based on, can realize high sensitivity, long perimeter, large range of perimeter protection, convenient installation.


2016 ◽  
Vol 34 (19) ◽  
pp. 4603-4609 ◽  
Author(s):  
Arnaud Peigne ◽  
Umberto Bortolozzo ◽  
Stefania Residori ◽  
Stephanie Molin ◽  
Vincent Billault ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document