scholarly journals Sensitivity Enhancement of Heterocore Macrobend Fiber Optics by Adding a ZnO Film

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Noor Azie Azura Mohd Arif ◽  
Dilla Duryha Berhanuddin ◽  
Abang Annuar Ehsan

Optical fibers with high sensitivity are in demand due to their great potential in sensor application. Semiconductors, such as ZnO, are good materials. Using them as a second cladding offers opportunities in realizing next-generation multimaterial fiber optics. COMSOL Multiphysics is used to simulate heterocore macrobend fiber optics with the same curvature radius but different values of refractive index and thickness of ZnO films. The optimum thickness of ZnO films is identified by determining the loss of optical fibers. Macrobend heterocore fiber optics by adding ZnO thin film has been established by simulating and interpreting the relationship in terms of transmission and refractive index in the evanescent field. These results will provide a reliable fundamental to guide the performance in practice.


Fiber optic has extraordinary properties and is suitable in sensor applications due to its special potential. Currently, macro bending characteristics of newly developed hetero core fiber optic element are designed and evaluated. This paper presents the preliminary results obtained from the numerical simulation analysis of the bending sensitivity of U-shape fiber optics toward the 2D electromagnetic wave in terms of mesh, curvature radius, core fiber size, and turn number. Fiber optics with core sizes of 4, 9, 50, and 62.5 μm were designed. In addition, the combination of core diameters 50-4-50, 50-9-50, 62.5-4-62.5, and 62.5-9-62.5 μm is evaluated to compare the outcome of transmission power in terms of hetero core structure of fiber optic. Simulation is performed using COMSOL Multiphysics simulation tool. The developed U-shape fiber optic is designed to sense the distortion of reducing power transmission by comparing input and output power. Results show that the selected mesh depends on the size of geometry bending fiber optics, and fine and finer mesh is the best for U-shape fiber optic. Furthermore, the power flow on the fiber decreases with the decreasing curvature radius and increasing turn number. The fiber with a core size combination of 62.5–4–62.5 um has high sensitivity in terms of loss. The attained results possess higher potential in the field of sensor applications, such as displacement, strain, pressure, and monitoring respiration, on human body. This study serves as a basis for further investigation of nanomaterial coating on fiber optics, thereby enhancing its credibility for sensing.



2019 ◽  
Vol 31 (4) ◽  
pp. 487-494 ◽  
Author(s):  
Xiaohong Yuan ◽  
Qufu Wei ◽  
Huizhen Ke ◽  
Zujian Huang ◽  
Dongsheng Chen

Purpose The purpose of this paper is to prepare structural colors of fabrics coated with Silver/Zinc Oxide (Ag/ZnO) composite films by magnetron sputtering and analyze the relationship between the colors and the thickness of Zinc Oxide (ZnO) film in Ag/ZnO composite film and the photocatalytic property of the fabrics coated with Ag/ZnO composite film. Design/methodology/approach Ag/ZnO composite films deposited on polyester fabrics were prepared by magnetron sputtering technology. The structural colors of textiles coated with Ag/ZnO composite films and the relationship between the colors and Ag/ZnO composite films were analyzed, and the photocatalytic property of Ag/ZnO composite films was also discussed. Findings The results indicated that the colors varied with the thicknesses of the ZnO film in Ag/ZnO composite films. The reactive sputtering time of ZnO film was 5, 8, 10 and 14 min, respectively, and the colors of the corresponding fabrics were purple, blue, blue-green and yellow. Meanwhile, the polyester fabrics coated with Ag/ZnO composite films showed the excellent photocatalytic properties, and silver (Ag) films deposited under the ZnO films in Ag/ZnO composite films could also improve the photocatalytic activities of ZnO films, and the formaldehyde degradation rates was 77.5%, which was higher than the 69.9% for the fabrics coated only with the ZnO film. Originality/value The polyester fabrics coated with Ag/ZnO composite films not only created various structural colors using change the thicknesses of the ZnO film, but also achieved the multifuctionality, which will have a broad application prospect in textile fields.



2021 ◽  
Vol 51 (3) ◽  
Author(s):  
Noor Azie Azura Mohd Arif ◽  
Dilla Durhya Burhanuddin ◽  
Sahbudin Shaari ◽  
Abang Annuar Ehsan

Bending losses in optical fibers comprise one of the extrinsic attenuations that contribute to optical loss and they are essential for optical fiber bending sensor applications. This work investigated the optical loss in a standard single-mode step-index fiber optics due to fiber bending at 1550 nm wavelength. Variations in macro-bending loss with curvature radius and turn number have been measured. Curvature radius and turn number are examined for sinusoidal and elliptical shaped bending configurations. It has been found that the loss increases as the bending radius and number of turns increase. The result also showed that elliptical shaped bending configuration produced more loss in contrast to that of sinusoidal shaped at bending angles of 180° and 360°. The study on the macro-bending loss in terms of curvature radius and turn number for both elliptical and sinusoidal shaped bending configurations is beneficial for future fiber optic sensor applications.



Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 921 ◽  
Author(s):  
Timur Ermatov ◽  
Julia S. Skibina ◽  
Valery V. Tuchin ◽  
Dmitry A. Gorin

Microstructured optical fiber-based sensors (MOF) have been widely developed finding numerous applications in various fields of photonics, biotechnology, and medicine. High sensitivity to the refractive index variation, arising from the strong interaction between a guided mode and an analyte in the test, makes MOF-based sensors ideal candidates for chemical and biochemical analysis of solutions with small volume and low concentration. Here, we review the modern techniques used for the modification of the fiber’s structure, which leads to an enhanced detection sensitivity, as well as the surface functionalization processes used for selective adsorption of target molecules. Novel functionalized MOF-based devices possessing these unique properties, emphasize the potential applications for fiber optics in the field of modern biophotonics, such as remote sensing, thermography, refractometric measurements of biological liquids, detection of cancer proteins, and concentration analysis. In this work, we discuss the approaches used for the functionalization of MOFs, with a focus on potential applications of the produced structures.



2012 ◽  
Vol 542-543 ◽  
pp. 901-904
Author(s):  
Ying Wu Zhou

A high sensitivity fiber-optic refractive index sensor based on the bi-conical single mode fiber tapers is proposed and demonstrated. The relationship between the resonance wavelength shift and surrounding refractive index is investigated. The experimental results show that the resonance wavelength linearly shifts toward longer wavelengths with the environmental refractive index ranging from 1.333 to 1.380. The response sensitivity increases with the decrease of the waist diameter of the tapered fiber. The proposed sensor is easily fabricated, compact and may be useful for the chemical and biotechnological industry.



2021 ◽  
Author(s):  
Lokendra Singh ◽  
Niteshkumar Agarwal ◽  
Himnashu Barthwal ◽  
Bhupal Arya ◽  
Taresh Singh

The unique properties of optical fibers such as small size, immunity to electromagnetic radiation, high sensitivity with simpler sensing systems have found their applications from structural monitoring to biomedical sensing. The inclusion of optical transducers, integrated electronics and new immobilization methods, the optical fibers have been used in industrial process, environmental monitoring, food processing and clinical applications. Further, the optical fiber sensing research has also been extended to the area of detection of micro-organisms such as bacteria, viruses, fungi and protozoa. The validation of optical fibers in bio-sensing applications can be observed from the growing number of publications. This chapter provides a brief picture of optical fiber biosensors, their geometries including the necessary procedure for their development. This chapter could be a milestone for the young researchers to establish their laboratory.



2011 ◽  
Vol 152 (2) ◽  
pp. 196-205 ◽  
Author(s):  
G. Quero ◽  
A. Crescitelli ◽  
D. Paladino ◽  
M. Consales ◽  
A. Buosciolo ◽  
...  


2016 ◽  
Vol 12 (6) ◽  
pp. 4127-4133
Author(s):  
Nazmul Kayes ◽  
Jalil Miah ◽  
Md. Obaidullah ◽  
Akter Hossain ◽  
Mufazzal Hossain

Photodegradation of textile dyes in the presence of an aqueous suspension of semiconductor oxides has been of growing interest. Although this method of destruction of dyes is efficient, the main obstacle of applying this technique in the industry is the time and cost involving separation of oxides from an aqueous suspension. In this research, an attempted was made to develop ZnO films on a glass substrate by simple immobilization method for the adsorption and photodegradation of a typical dye, Remazol Red R (RRR) from aqueous solution. Adsorption and photodegradation of  RRR were performed in the presence of glass supported ZnO film. Photodegradation of the dye was carried out by varying different parameters such as the catalyst dosage, initial concentrations of RRR, and light sources. The percentage of adsorption as well as photodegradation increased with the amount of ZnO, reaches a maximum and then decreased. Maximum degradation has been found under solar light irradiation as compared to UV-light irradiation. Removal efficiency was also found to be influenced by the pre-sonication of ZnO suspension.



Sign in / Sign up

Export Citation Format

Share Document