scholarly journals Evaluation of the Redox Behavior of Hydrous Ruthenium Oxides: Effect of Temperature and Acid Concentration on the Electrochemical Behavior of Layered Ruthenium Oxide

2007 ◽  
Vol 75 (8) ◽  
pp. 645-648 ◽  
Author(s):  
Wataru SUGIMOTO ◽  
Toshiaki OHTA ◽  
Katsunori YOKOSHIMA ◽  
Yoshio TAKASU
Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1782
Author(s):  
Amir M. Ashrafi ◽  
Pavel Kopel ◽  
Lukas Richtera

The electrochemical redox behavior of three trinuclear Ni(II) complexes [Ni3(abb)3(H2O)3(µ-ttc)](ClO4)3 (1), [Ni3(tebb)3(H2O)3(µ-ttc)](ClO4)3·H2O (2), and [Ni3(pmdien)3(µ-ttc)](ClO4)3 (3), where abb = 1-(1H-benzimidazol-2-yl)-N-(1H-benzimidazol-2-ylmethyl)methan-amine, ttcH3 = trithiocyanuric acid, tebb = 2-[2-[2-(1H-benzimidazol-2-yl)ethylsulfanyl]ethyl]-1H-benzimidazole, and pmdien = N,N,N′,N″,N″-pentamethyldiethylenetriamine is reported. Cyclic voltammetry (CV) was applied for the study of the electrochemical behavior of these compounds. The results confirmed the presence of ttc and nickel in oxidation state +2 in the synthesized complexes. Moreover, the antibacterial properties and cytotoxic activity of complex 3 was investigated. All the complexes show antibacterial activity against Staphylococcus aureus and Escherichia coli to different extents. The cytotoxic activity of complex 3 and ttcNa3 were studied on G-361, HOS, K-562, and MCF7 cancer cell lines. It was found out that complex 3 possesses the cytotoxic activity against the tested cell lines, whereas ttcNa3 did not show any cytotoxic activity.


CORROSION ◽  
1966 ◽  
Vol 22 (2) ◽  
pp. 32-38 ◽  
Author(s):  
J. R. MYERS ◽  
W. B. CROW ◽  
F. H. BECK ◽  
R. K. SAXER

Abstract Metallographic examination of anodically polarized nickel and chromium after long-time exposure at selected active, passive and transpassive potentials in H2-saturated, IN H2SO4 at 25 C (77 F) revealed significant differences in surface topography. Etch figures, present only in the trans-passive state, supported the belief that “active patches” are generated in passive films of these metals at potentials more noble than the passive region. The difference in nature of nickel surface in the early trans-passive region and visible oxygen evolution region is discussed. Effect of temperature on passive nickel (i.e., nickel in passive potential region) over the range 25 to 95 C (77 to 203 F) was determined for H2-saturated 0.5, 1, 5 and ION H2SO4 (pH = 0.85 to −1.05). Apparent activation energies for dissolution of passive nickel were determined. Inflection temperature (Ti) above which “active patches” apparently are formed in passive film was dependent on acid concentration according to the expression 1/Ti × 103 = −0.11 pH+ 3.04 over the pH range investigated and was independent of the direction from which the temperature was approached. The change in apparent activation energy (ΔQ) was a function of direction from which the temperature was approached. Measurements in which temperature was increased stepwise showed that ΔQ is related to pH by the expression ΔQ (kg - cal/mole) = 15,4 pH - 4.7 for acid concentrations studied. Because Ti and ΔQ are dependent on acid concentration, Seeger's activation energy for crystallization of a very thin pseudomorphic film and Kramer's exo-electron emission temperature which are independent of concentration cannot be used to explain fully generation of “active patches” in a passive film as proposed by previous investigators.


1992 ◽  
Vol 70 (7) ◽  
pp. 2076-2080 ◽  
Author(s):  
Bruce J. Acken ◽  
David E. Gallis ◽  
James A. Warshaw ◽  
DeLanson R. Crist

The redox behavior of various C-substituted nitrones was investigated by cyclic voltammetry in acetonitrile. These included C-methoxynitrones (MeO)CR = N(O)t-Bu with R = C6H5(1a), p-MeOC6H4 (1b), p-NO2C6H4 (1c), and H (1d) and nitrones YCH = N(O)t-Bu with Y = n-BuS (2a), CN (2b), and C6H5NH (2c). All gave anodic peaks which can be identified as oxidations of the nitrone function. Controlled potential electrolysis of 1a at 1.05 V (SCE) showed that its oxidation was a one-electron process. Reduction of 1a occurs stepwise at −2.08 and at −2.47 V, the same potential for reduction of methyl N-tert-butylbenzimidate (MeO)CPh = Nt-Bu. With electrochemical windows of ca. 3 V, all of the nitrones studied appear suitable for spin-trapping experiments.


2002 ◽  
Vol 16 (28n29) ◽  
pp. 4479-4483 ◽  
Author(s):  
JIAN-RONG ZHANG ◽  
BIN CHEN ◽  
WEI-KUAN LI ◽  
JUN-JIE ZHU ◽  
LI-PING JIANG

The RuO 2· xH 2 O/C composites were prepared directly based on a sol-gel process under ultrasonic wave (50Hz). The specific capacitance of pure RuO 2· xH 2 O materials obtained by the method reached a value of 760F/g. Physical properties of the material and electrochemical characteristics of electrodes were described.


2016 ◽  
Vol 18 (1) ◽  
pp. 58-63 ◽  
Author(s):  
Hamidreza Ghafouri Taleghani ◽  
Ghasem D. Najafpour ◽  
Ali Asghar Ghoreyshi

Abstract In batch fermentation of whey, selection of suitable species at desired conditions such as substrate, product concentrations, temperature and inoculum size were investigated. Four Lactobacillus species and one Lactococcus species were screened for lactic acid production. Among them L. bulgaricus ATCC 11842 were selected for further studies. The optimal growth of the selected organism for variable size of inocula was examined. The results indicated that inoculum size had insignificant effect on the cell and lactic acid concentration. The effect of temperature was also studied at 32, 37, 42 and 47°C. Results showed that the concentration of cell dry weight increased with increment of temperature from 32 to 42°C. The maximum cell and lactic acid concentration was obtained at 42°C. The effect of initial substrate concentration on lactic acid production was also examined. The optimum initial lactose concentration was found to be 90 g/l.


2006 ◽  
Vol 160 (2) ◽  
pp. 1506-1510 ◽  
Author(s):  
Wei-Chuan Fang ◽  
Jin-Hua Huang ◽  
Li-Chyong Chen ◽  
Yuh-Long Oliver Su ◽  
Kuei-Hsien Chen

Sign in / Sign up

Export Citation Format

Share Document