Climate Change Impacts on Species Interactions: Assessing the Threat of Cascading Extinctions

2012 ◽  
pp. 337-359 ◽  
Author(s):  
Lesley Hughes
2019 ◽  
Vol 286 (1914) ◽  
pp. 20192227 ◽  
Author(s):  
Elvire Bestion ◽  
Andrea Soriano-Redondo ◽  
Julien Cucherousset ◽  
Staffan Jacob ◽  
Joël White ◽  
...  

Species interactions are central in predicting the impairment of biodiversity with climate change. Trophic interactions may be altered through climate-dependent changes in either predator food preferences or prey communities. Yet, climate change impacts on predator diet remain surprisingly poorly understood. We experimentally studied the consequences of 2°C warmer climatic conditions on the trophic niche of a generalist lizard predator. We used a system of semi-natural mesocosms housing a variety of invertebrate species and in which climatic conditions were manipulated. Lizards in warmer climatic conditions ate at a greater predatory to phytophagous invertebrate ratio and had smaller individual dietary breadths. These shifts mainly arose from direct impacts of climate on lizard diets rather than from changes in prey communities. Dietary changes were associated with negative changes in fitness-related traits (body condition, gut microbiota) and survival. We demonstrate that climate change alters trophic interactions through top-predator dietary shifts, which might disrupt eco-evolutionary dynamics.


Ecologies ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 313-331
Author(s):  
Haijiang Yang ◽  
Xiaohua Gou ◽  
Dingcai Yin

Climate change is having a significant impact on the global ecosystem and is likely to become increasingly important as this phenomenon intensifies. Numerous studies in climate change impacts on biodiversity, ecosystems, and ecosystem services in China have been published in recent decades. However, a comprehensive review of the topic is needed to provide an improved understanding of the history and driving mechanisms of environmental changes within the region. Here we review the evidence for changes in climate and the peer-reviewed literature that assesses climate change impacts on biodiversity, ecosystem, and ecosystem services at a China scale. Our main conclusions are as follows. (1) Most of the evidence shows that climate change (the increasing extreme events) is affecting the change of productivity, species interactions, and biological invasions, especially in the agro-pastoral transition zone and fragile ecological area in Northern China. (2) The individuals and populations respond to climate change through changes in behavior, functions, and geographic scope. (3) The impact of climate change on most types of services (provisioning, regulating, supporting, and cultural) in China is mainly negative and brings threats and challenges to human well-being and natural resource management, therefore, requiring costly societal adjustments. In general, although great progress has been made, the management strategies still need to be further improved. Integrating climate change into ecosystem services assessment and natural resource management is still a major challenge. Moving forward, it is necessary to evaluate and research the effectiveness of typical demonstration cases, which will contribute to better scientific management of natural resources in China and the world.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Juliana G. de S. Magalhães ◽  
Mariano M. Amoroso ◽  
Bruce C. Larson

Abstract Background Projections of climate change impacts upon forests are likely inaccurate if based on the premise that only climate controls tree growth. Species interactions control growth, but most research has ignored these effects on how trees respond to climate change. Climate change is inducing natural species selection. However, this selection does not occur at the community level. Species selection starts with competition amongst individual trees. Competition is an individual-to-individual antagonistic interaction that, if severe, can constrain the presence of trees within a particular environment. Thus, climate change impacts individual tree selection within forests. Projecting climate change impacts on forests should account for the effects of climate on tree growth and the effects of competition. The inclusion of competition can increase the predictive power of simulations. Methods We propose a protocol to systematically map the available literature on climate change impacts on forests and produce a comprehensive list of methods applied to measure competition and model the competition effects on tree growth responses to climate change. This systematic map is not limited to any country or continent or specific tree species or forest type. The scope of the search focuses on time (when the evidence was published), location (geographic location of the evidence) and research design (competition indices and modelling methods). We will evaluate articles at three levels: title, abstract and full text. We will conduct a full-text assessment on all articles that pass a screening at the title and abstract stages. We will report the extracted evidence in a narrative synthesis to summarize the evidence’s trends and report knowledge gaps.


2015 ◽  
Vol 282 (1815) ◽  
pp. 20151549 ◽  
Author(s):  
Lauren E. Culler ◽  
Matthew P. Ayres ◽  
Ross A. Virginia

Climate change is altering environmental temperature, a factor that influences ectothermic organisms by controlling rates of physiological processes. Demographic effects of warming, however, are determined by the expression of these physiological effects through predator–prey and other species interactions. Using field observations and controlled experiments, we measured how increasing temperatures in the Arctic affected development rates and mortality rates (from predation) of immature Arctic mosquitoes in western Greenland. We then developed and parametrized a demographic model to evaluate how temperature affects survival of mosquitoes from the immature to the adult stage. Our studies showed that warming increased development rate of immature mosquitoes ( Q 10 = 2.8) but also increased daily mortality from increased predation rates by a dytiscid beetle ( Q 10 = 1.2–1.5). Despite increased daily mortality, the model indicated that faster development and fewer days exposed to predators resulted in an increased probability of mosquito survival to the adult stage. Warming also advanced mosquito phenology, bringing mosquitoes into phenological synchrony with caribou. Increases in biting pests will have negative consequences for caribou and their role as a subsistence resource for local communities. Generalizable frameworks that account for multiple effects of temperature are needed to understand how climate change impacts coupled human–natural systems.


2011 ◽  
Vol 279 (1732) ◽  
pp. 1366-1370 ◽  
Author(s):  
Jedediah Brodie ◽  
Eric Post ◽  
Fred Watson ◽  
Joel Berger

Altered species interactions are difficult to predict and yet may drive the response of ecological communities to climate change. We show that declining snowpack strengthens the impacts of a generalist herbivore, elk ( Cervus elaphus ), on a common tree species. Thick snowpack substantially reduces elk visitation to sites; aspen ( Populus tremuloides ) shoots in these areas experience lower browsing rates, higher survival and enhanced recruitment. Aspen inside herbivore exclosures have greatly increased recruitment, particularly at sites with thick snowpack. We suggest that long-term decreases in snowpack could help explain a widespread decline of aspen through previously unconsidered relationships. More generally, reduced snowpack across the Rocky Mountains, combined with rising elk populations, may remove the conditions needed for recruitment of this ecologically important tree species. These results highlight that herbivore behavioural responses to altered abiotic conditions are critical determinants of plant persistence. Predictions of climate change impacts must not overlook the crucial importance of species interactions.


2012 ◽  
Vol 279 (1735) ◽  
pp. 2072-2080 ◽  
Author(s):  
Mark C. Urban ◽  
Josh J. Tewksbury ◽  
Kimberly S. Sheldon

Most climate change predictions omit species interactions and interspecific variation in dispersal. Here, we develop a model of multiple competing species along a warming climatic gradient that includes temperature-dependent competition, differences in niche breadth and interspecific differences in dispersal ability. Competition and dispersal differences decreased diversity and produced so-called ‘no-analogue’ communities, defined as a novel combination of species that does not currently co-occur. Climate change altered community richness the most when species had narrow niches, when mean community-wide dispersal rates were low and when species differed in dispersal abilities. With high interspecific dispersal variance, the best dispersers tracked climate change, out-competed slower dispersers and caused their extinction. Overall, competition slowed the advance of colonists into newly suitable habitats, creating lags in climate tracking. We predict that climate change will most threaten communities of species that have narrow niches (e.g. tropics), vary in dispersal (most communities) and compete strongly. Current forecasts probably underestimate climate change impacts on biodiversity by neglecting competition and dispersal differences.


2019 ◽  
Author(s):  
International Food Policy Research Institute (IFPRI)

Sign in / Sign up

Export Citation Format

Share Document