scholarly journals What evidence exists on the effects of competition on trees’ responses to climate change? A systematic map protocol

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Juliana G. de S. Magalhães ◽  
Mariano M. Amoroso ◽  
Bruce C. Larson

Abstract Background Projections of climate change impacts upon forests are likely inaccurate if based on the premise that only climate controls tree growth. Species interactions control growth, but most research has ignored these effects on how trees respond to climate change. Climate change is inducing natural species selection. However, this selection does not occur at the community level. Species selection starts with competition amongst individual trees. Competition is an individual-to-individual antagonistic interaction that, if severe, can constrain the presence of trees within a particular environment. Thus, climate change impacts individual tree selection within forests. Projecting climate change impacts on forests should account for the effects of climate on tree growth and the effects of competition. The inclusion of competition can increase the predictive power of simulations. Methods We propose a protocol to systematically map the available literature on climate change impacts on forests and produce a comprehensive list of methods applied to measure competition and model the competition effects on tree growth responses to climate change. This systematic map is not limited to any country or continent or specific tree species or forest type. The scope of the search focuses on time (when the evidence was published), location (geographic location of the evidence) and research design (competition indices and modelling methods). We will evaluate articles at three levels: title, abstract and full text. We will conduct a full-text assessment on all articles that pass a screening at the title and abstract stages. We will report the extracted evidence in a narrative synthesis to summarize the evidence’s trends and report knowledge gaps.

Author(s):  
Seth W Bigelow ◽  
Christopher E Looney ◽  
Jeffery B Cannon

Abstract The Adaptive Silviculture for Climate Change (ASCC) network tests silvicultural treatments to promote ‘resistance’ or ‘resilience’ to climate change or speed ‘transition’ to new forest types. Based on projected increases in air temperatures and within-season dry periods in southeastern USA, we installed resistance, resilience and transition treatments involving species selection and varied intensities of density reduction, plus an untreated control, in mixed longleaf pine-hardwood woodland in southwest Georgia USA. Within a year of treatment a tropical cyclone, Hurricane Michael, exposed the site to the unforeseen climatic stress of >44-m s−1 winds. We measured inventory plots post-cyclone and compared the data to pre-storm and pre-treatment values. We analysed stand density index (metric SDI, species maximum value = 1000), stand complexity index (SCI), composition and individual tree characteristics. The ASCC treatments decreased both SDI (from 220 to 124 in the transition treatment) and SCI. The cyclone did not greatly decrease SDI (mean decrease 4.5 per cent) and decreased SCI only in the Controls. Xeric hardwoods were more prone to damage than other functional groups, and ordination showed that the cyclone shifted species composition to greater longleaf pine dominance. Taller trees were more likely to be damaged, except in the resilience treatment, which had a relatively large representation of shorter, more easily damaged xeric hardwoods. The open canopy of the longleaf-hardwood woodland, only 22 per cent of maximum SDI before treatment, evidently fostered wind-firmness, thereby limiting the destructive effect of the cyclone. The sensitivity of xeric hardwoods to hurricane damage suggests that there may be a trade-off between wind tolerance and drought tolerance among functional groups. Maintaining a mixture of drought and wind-resistant species, as in the resilience treatments, may provide broader insurance against multiple climate change impacts in longleaf pine and other forested systems dominated by a single foundation species.


2017 ◽  
Vol 47 (1) ◽  
pp. 53-62 ◽  
Author(s):  
Kevin R. Ford ◽  
Ian K. Breckheimer ◽  
Jerry F. Franklin ◽  
James A. Freund ◽  
Steve J. Kroiss ◽  
...  

Understanding how climate affects tree growth is essential for assessing climate change impacts on forests but can be confounded by effects of competition, which strongly influences tree responses to climate. We characterized the joint influences of tree size, competition, and climate on diameter growth using hierarchical Bayesian methods applied to permanent sample plot data from the montane forests of Mount Rainier National Park, Washington State, USA, which are mostly comprised of Abies amabilis Douglas ex Forbes, Tsuga heterophylla (Raf.) Sarg., Pseudotsuga menziesii (Mirb.) Franco, and Thuja plicata Donn ex D. Don. Individual growth was sensitive to climate under low but not high competition, likely because tree ability to increase growth under more favorable climates (generally greater energy availability) was constrained by competition, with important variation among species. Thus, climate change will likely increase individual growth most in uncrowded stands with lower competition. However, crowded stands have more and (or) larger trees, conferring greater capacity for aggregate absolute growth increases. Due to these contrasting effects, our models predicted that climate change will lead to greater stand-scale growth increases in stands with medium compared with low crowding but similar increases in stands with medium and high crowding. Thus, competition will mediate the impacts of climate change on individual- and stand-scale growth in important but complex ways.


2021 ◽  
Author(s):  
Giovanna Battipaglia ◽  
Francesco Niccoli ◽  
Arturo Pacheco-Solana

<p>Climate-induced forest mortality is a critical issue in the Mediterranean basin, with major consequences for the functioning of these key ecosystems. Indeed, in Mediterranean ecosystems, where water stress is already the most limiting factor for tree performance, climatic changes are expected to entail an increase in water deficit. In this context, annual growth rings can provide short- (e.g., years) and long-term (e.g., decades) information on how trees respond to drought events. With climate change, <em>Pinus pinaster</em> and <em>Pinus pinea</em> L. are expected to reduce their distribution range in the region, being displaced at low altitudes by more drought tolerant taxa such as sub Mediterranean <em>Quercus</em> spp.</p><p>This study aims was to assess the physiological response of <em>Pinus</em> and <em>Quercus</em> species growing in the Vesuvio National park, located in Southern Italy and where an increase of temperature and drought events has been recorded in the recent years. Our preliminary results underlined the importance of temperature on the tree ring width of all the analyses species. The high temperatures can cause a change in the constant kinetics of the RuBisCo, leading to a consequent decrease in carboxylation rate and thus to a reduction in tree growth. On the other hand, also precipitation seemed to affect the growth of the sampled trees: indeed, in all the chronologies a reduction in growth was found after particular dry years: for example, the low rainfall in 1999 (455 mm/year) determined a drastic decline in growth in 2000 in all the species. In addition to the climatic factors, competition can also play an important role in the growth rate: dendrochronological analyzes have highlighted how stand specific properties (i.e. density, structure and composition) can influence individual tree responses to drought events. The knowledge of those researches should be integrated into sustainable forest management strategies to minimize the potential impacts of climate change on forest ecosystems.</p>


2021 ◽  
Vol 9 ◽  
Author(s):  
Zhuangpeng Zheng ◽  
Feifei Zhou ◽  
Patrick Fonti ◽  
Ping Ren ◽  
Xiaoxia Li ◽  
...  

Monitoring cambial activity is important for a better understanding of the mechanisms governing xylem growth responses to climate change, providing a scientific basis for tree-ring-based climate reconstructions and projections about tree growth under future climate scenarios. It plays an even more important role in investigating evergreen tree growth in regions with less distinct seasonal cycles. Subtropical evergreen forests have been studied in recent years for their sensitivity to climate change, but it remains unclear how xylem growth is driven by subtropical climates. To further understand the climate-growth response strategies of subtropical conifers, we micro-cored Cryptomeria fortunei and Cunninghamia lanceolata weekly in 2016 and 2017 at the humid subtropical Gushan Mountain in southeastern China. Our weekly growth monitoring showed that the vegetation periods of these two species were both approximately 2–3 months longer than trees in temperate and boreal forests. The growth of C. fortunei in 2016 and 2017 and C. lanceolata in 2017 showed a bimodal pattern of xylogenesis, which was induced by summer drought. The results also indicated that the earlier end of the xylem formation was related to the yearly drought stress. These findings provide more specific information about tree growth and evidence of how climate influences wood production at the cellular level in subtropical regions.


2005 ◽  
Vol 360 (1463) ◽  
pp. 2149-2154 ◽  
Author(s):  
Lin Erda ◽  
Xiong Wei ◽  
Ju Hui ◽  
Xu Yinlong ◽  
Li Yue ◽  
...  

A regional climate change model (PRECIS) for China, developed by the UK's Hadley Centre, was used to simulate China's climate and to develop climate change scenarios for the country. Results from this project suggest that, depending on the level of future emissions, the average annual temperature increase in China by the end of the twenty-first century may be between 3 and 4 °C. Regional crop models were driven by PRECIS output to predict changes in yields of key Chinese food crops: rice, maize and wheat. Modelling suggests that climate change without carbon dioxide (CO 2 ) fertilization could reduce the rice, maize and wheat yields by up to 37% in the next 20–80 years. Interactions of CO 2 with limiting factors, especially water and nitrogen, are increasingly well understood and capable of strongly modulating observed growth responses in crops. More complete reporting of free-air carbon enrichment experiments than was possible in the Intergovernmental Panel on Climate Change's Third Assessment Report confirms that CO 2 enrichment under field conditions consistently increases biomass and yields in the range of 5–15%, with CO 2 concentration elevated to 550 ppm Levels of CO 2 that are elevated to more than 450 ppm will probably cause some deleterious effects in grain quality. It seems likely that the extent of the CO 2 fertilization effect will depend upon other factors such as optimum breeding, irrigation and nutrient applications.


Forests ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 1133 ◽  
Author(s):  
Lei Zhang ◽  
Hao Shi ◽  
Pengtao Yu ◽  
Yanhui Wang ◽  
Shufen Pan ◽  
...  

Dryland montane forests conserve water for people living in the fluvial plains. The fate of these forests under climate warming is strongly affected by local environmental factors. The question remains of how internal factors contribute to climate change impacts on forest growth in these regions. Here, we investigated tree ring records for similar-aged stand-grown trees and their neighboring open-grown trees at elevation in a dryland montane forest (Picea crassifolia Kom.) in northwestern China. The growth rate of open-grown trees is much higher than their neighboring stand-grown trees across the entire elevation gradient, and the lower the altitude, the greater the difference. Open-grown trees at different elevations showed similar growth patterns, as tree growth at all sites was accelerated over time. In contrast, growth patterns of stand-grown trees were divergent at different altitudes, as growth at high elevations (3100–3300 m a.s.l.) was accelerated, whereas growth at low elevations (2700–2900 m a.s.l.) became stable after the year 1990. Analysis of growth–climate relationships indicated that warming promoted open-grown tree growth across the entire altitude gradient, and also stand-grown tree growth at high elevations, but negatively affected the growth of stand-grown trees at low elevations. Water scarcity can be exacerbated by competition within forests, inhibiting the warming-induced benefits on tree growth. Moving window correlation analysis suggested the negative effect of warming on tree growth at low elevations was diminished after the late 1990s, as the drought stress was alleviated. Our research shows the divergent growth responses to warming of stand-grown and open-grown trees along elevation. It reveals effects of internal factors in determining tree growth response to warming and holds the potential to aid forest management and ecosystem models in responding to climate change.


2020 ◽  
Vol 29 (8) ◽  
pp. 1360-1372 ◽  
Author(s):  
Raúl García‐Valdés ◽  
Alba Estrada ◽  
Regan Early ◽  
Veiko Lehsten ◽  
Xavier Morin

2019 ◽  
Vol 286 (1914) ◽  
pp. 20192227 ◽  
Author(s):  
Elvire Bestion ◽  
Andrea Soriano-Redondo ◽  
Julien Cucherousset ◽  
Staffan Jacob ◽  
Joël White ◽  
...  

Species interactions are central in predicting the impairment of biodiversity with climate change. Trophic interactions may be altered through climate-dependent changes in either predator food preferences or prey communities. Yet, climate change impacts on predator diet remain surprisingly poorly understood. We experimentally studied the consequences of 2°C warmer climatic conditions on the trophic niche of a generalist lizard predator. We used a system of semi-natural mesocosms housing a variety of invertebrate species and in which climatic conditions were manipulated. Lizards in warmer climatic conditions ate at a greater predatory to phytophagous invertebrate ratio and had smaller individual dietary breadths. These shifts mainly arose from direct impacts of climate on lizard diets rather than from changes in prey communities. Dietary changes were associated with negative changes in fitness-related traits (body condition, gut microbiota) and survival. We demonstrate that climate change alters trophic interactions through top-predator dietary shifts, which might disrupt eco-evolutionary dynamics.


Ecologies ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 313-331
Author(s):  
Haijiang Yang ◽  
Xiaohua Gou ◽  
Dingcai Yin

Climate change is having a significant impact on the global ecosystem and is likely to become increasingly important as this phenomenon intensifies. Numerous studies in climate change impacts on biodiversity, ecosystems, and ecosystem services in China have been published in recent decades. However, a comprehensive review of the topic is needed to provide an improved understanding of the history and driving mechanisms of environmental changes within the region. Here we review the evidence for changes in climate and the peer-reviewed literature that assesses climate change impacts on biodiversity, ecosystem, and ecosystem services at a China scale. Our main conclusions are as follows. (1) Most of the evidence shows that climate change (the increasing extreme events) is affecting the change of productivity, species interactions, and biological invasions, especially in the agro-pastoral transition zone and fragile ecological area in Northern China. (2) The individuals and populations respond to climate change through changes in behavior, functions, and geographic scope. (3) The impact of climate change on most types of services (provisioning, regulating, supporting, and cultural) in China is mainly negative and brings threats and challenges to human well-being and natural resource management, therefore, requiring costly societal adjustments. In general, although great progress has been made, the management strategies still need to be further improved. Integrating climate change into ecosystem services assessment and natural resource management is still a major challenge. Moving forward, it is necessary to evaluate and research the effectiveness of typical demonstration cases, which will contribute to better scientific management of natural resources in China and the world.


Sign in / Sign up

Export Citation Format

Share Document