scholarly journals Improved Object Matching in Multi-Objects Tracking Based On Zernike Moments and Combination of Multiple Similarity Metrics

2021 ◽  
Vol 34 (6) ◽  
2016 ◽  
Vol 11 (4) ◽  
pp. 324
Author(s):  
Nor Nadirah Abdul Aziz ◽  
Yasir Mohd Mustafah ◽  
Amelia Wong Azman ◽  
Amir Akramin Shafie ◽  
Muhammad Izad Yusoff ◽  
...  

2019 ◽  
Vol 78 (14) ◽  
pp. 1249-1261
Author(s):  
O. Rubel ◽  
S. K. Abramov ◽  
V. V. Abramova ◽  
V. V. Lukin

Author(s):  
Tu Huynh-Kha ◽  
Thuong Le-Tien ◽  
Synh Ha ◽  
Khoa Huynh-Van

This research work develops a new method to detect the forgery in image by combining the Wavelet transform and modified Zernike Moments (MZMs) in which the features are defined from more pixels than in traditional Zernike Moments. The tested image is firstly converted to grayscale and applied one level Discrete Wavelet Transform (DWT) to reduce the size of image by a half in both sides. The approximation sub-band (LL), which is used for processing, is then divided into overlapping blocks and modified Zernike moments are calculated in each block as feature vectors. More pixels are considered, more sufficient features are extracted. Lexicographical sorting and correlation coefficients computation on feature vectors are next steps to find the similar blocks. The purpose of applying DWT to reduce the dimension of the image before using Zernike moments with updated coefficients is to improve the computational time and increase exactness in detection. Copied or duplicated parts will be detected as traces of copy-move forgery manipulation based on a threshold of correlation coefficients and confirmed exactly from the constraint of Euclidean distance. Comparisons results between proposed method and related ones prove the feasibility and efficiency of the proposed algorithm.


2021 ◽  
Vol 11 (5) ◽  
pp. 2040-2049
Author(s):  
Vinaya Kumar Katneni ◽  
Mudagandur S. Shekhar ◽  
Ashok Kumar Jangam ◽  
Balasubramanian C. Paran ◽  
Ashok Selvaraj ◽  
...  

2021 ◽  
Vol 25 (4) ◽  
pp. 763-787
Author(s):  
Alladoumbaye Ngueilbaye ◽  
Hongzhi Wang ◽  
Daouda Ahmat Mahamat ◽  
Ibrahim A. Elgendy ◽  
Sahalu B. Junaidu

Knowledge extraction, data mining, e-learning or web applications platforms use heterogeneous and distributed data. The proliferation of these multifaceted platforms faces many challenges such as high scalability, the coexistence of complex similarity metrics, and the requirement of data quality evaluation. In this study, an extended complete formal taxonomy and some algorithms that utilize in achieving the detection and correction of contextual data quality anomalies were developed and implemented on structured data. Our methods were effective in detecting and correcting more data anomalies than existing taxonomy techniques, and also highlighted the demerit of Support Vector Machine (SVM). These proposed techniques, therefore, will be of relevance in detection and correction of errors in large contextual data (Big data).


Author(s):  
Wei Huang ◽  
Xiaoshu Zhou ◽  
Mingchao Dong ◽  
Huaiyu Xu

AbstractRobust and high-performance visual multi-object tracking is a big challenge in computer vision, especially in a drone scenario. In this paper, an online Multi-Object Tracking (MOT) approach in the UAV system is proposed to handle small target detections and class imbalance challenges, which integrates the merits of deep high-resolution representation network and data association method in a unified framework. Specifically, while applying tracking-by-detection architecture to our tracking framework, a Hierarchical Deep High-resolution network (HDHNet) is proposed, which encourages the model to handle different types and scales of targets, and extract more effective and comprehensive features during online learning. After that, the extracted features are fed into different prediction networks for interesting targets recognition. Besides, an adjustable fusion loss function is proposed by combining focal loss and GIoU loss to solve the problems of class imbalance and hard samples. During the tracking process, these detection results are applied to an improved DeepSORT MOT algorithm in each frame, which is available to make full use of the target appearance features to match one by one on a practical basis. The experimental results on the VisDrone2019 MOT benchmark show that the proposed UAV MOT system achieves the highest accuracy and the best robustness compared with state-of-the-art methods.


Author(s):  
Anne Driemel ◽  
André Nusser ◽  
Jeff M. Phillips ◽  
Ioannis Psarros

AbstractThe Vapnik–Chervonenkis dimension provides a notion of complexity for systems of sets. If the VC dimension is small, then knowing this can drastically simplify fundamental computational tasks such as classification, range counting, and density estimation through the use of sampling bounds. We analyze set systems where the ground set X is a set of polygonal curves in $$\mathbb {R}^d$$ R d and the sets $$\mathcal {R}$$ R are metric balls defined by curve similarity metrics, such as the Fréchet distance and the Hausdorff distance, as well as their discrete counterparts. We derive upper and lower bounds on the VC dimension that imply useful sampling bounds in the setting that the number of curves is large, but the complexity of the individual curves is small. Our upper and lower bounds are either near-quadratic or near-linear in the complexity of the curves that define the ranges and they are logarithmic in the complexity of the curves that define the ground set.


Optik ◽  
2014 ◽  
Vol 125 (10) ◽  
pp. 2243-2247 ◽  
Author(s):  
Rui Yao ◽  
Yanning Zhang ◽  
Yong Zhou ◽  
Shixiong Xia

Sign in / Sign up

Export Citation Format

Share Document