scholarly journals Comparing Measured Duff Moisture with a Water Budget Model and the Duff and Drought Codes of the Canadian Fire Weather Index

2013 ◽  
Vol 59 (1) ◽  
pp. 78-92 ◽  
Author(s):  
Edward A. Johnson ◽  
David M. Keith ◽  
Yvonne E. Martin
2017 ◽  
Author(s):  
Francesca Di Giuseppe ◽  
Samuel Rémy ◽  
Florian Pappenberger ◽  
Fredrik Wetterhall

Abstract. The atmospheric composition analysis and forecast for the European Copernicus Atmosphere Monitoring Services (CAMS) relies on biomass burning fire emission estimates from the Global Fire Assimilation System (GFAS). GFAS converts fire radiative power (FRP) observations from MODIS satellites into smoke constituents. Missing observations are filled in using persistence where observed FRP from the previous day are progressed in time until a new observation is recorded. One of the consequences of this assumption is an overestimation of fire duration, which in turn translates into an overestimation of emissions from fires. In this study persistence is replaced by modelled predictions using the Canadian Fire Weather Index (FWI), which describes how atmospheric conditions affect the vegetation moisture content and ultimately fire duration. The skill in predicting emissions from biomass burning is improved with the new technique, which indicates that using an FWI-based model to infer emissions from FRP is better than persistence when observations are not available.


2020 ◽  
pp. 45-63 ◽  
Author(s):  
Zuzana Hubnerova ◽  
Sylvia Esterby ◽  
Steve Taylor

2020 ◽  
Author(s):  
Ana Bernardo ◽  
Pedro Silva ◽  
Paulo Fazendeiro

Several of the fighting weaknesses evidenced by the forest fires tragedies of the last years are rooted in the disconnection between the current technical/scientific resources and the availability of the resulting information to operational agents on the ground. In order to be effective, a pre-emptive response to similar disasters must include the articulation between local authorities at municipal level - in prevention, preparedness and initial response - and the common citizen who is on the field, resides there, and has a deeper knowledge about the field of operation. This work intends to take a first step in the development of a tool that can serve to improve the civic awareness of all and to support the decision-making of the competent authorities. Keywords: Internet of things, Citizen science, Fire weather index


2021 ◽  
Author(s):  
Piyush Jain ◽  
Dante Castellanos-Acuna ◽  
Sean Coogan ◽  
John Abatzoglou ◽  
Mike Flannigan

Abstract Climate and weather greatly influence wildfire, and recent increases in wildfire activity have been linked to climate change. However, the atmospheric drivers of observed changes have not been articulated globally. We present a global analysis of trends in extreme fire weather from 1979–2020. Significant increases in extreme (95th percentile) annual values of the Fire Weather Index (FWI95), Initial Spread Index (ISI95), and Vapour Pressure Deficit (VPD95) occurred over 26.0%, 26.1%, and 46.1% of the global burnable landmass, respectively. Significant trends corresponded to a 35.8%, 36.0%, and 21.4% increase in mean global FWI95, ISI95, and VPD95, respectively. Relative humidity and temperature were identified as the drivers of significant trends in FWI95 and ISI95 in most regions, largely where temperature trends outpaced dew point trends. We identified relatively few regions in which wind speed or precipitation were drivers. These findings have wide-ranging implications for understanding fire risk in a changing climate.


2020 ◽  
Author(s):  
Geert Jan van Oldenborgh ◽  
Folmer Krikken ◽  
Sophie Lewis ◽  
Nicholas J. Leach ◽  
Flavio Lehner ◽  
...  

Abstract. Disastrous bushfires during the last months of 2019 and January 2020 affected Australia, raising the question to what extent the risk of these fires was exacerbated by anthropogenic climate change. To answer the question for southeastern Australia, where fires were particularly severe, affecting people and ecosystems, we use a physically-based index of fire weather, the Fire Weather Index, long-term observations of heat and drought, and eleven large ensembles of state-of-the-art climate models. In agreement with previous analyses we find that heat extremes have become more likely by at least a factor two due to the long-term warming trend. However, current climate models overestimate variability and tend to underestimate the long-term trend in these extremes, so the true change in the likelihood of extreme heat could be larger. We do not find an attributable trend in either extreme annual drought or the driest month of the fire season September–February. The observations, however, show a weak drying trend in the annual mean. Finally, we find large trends in the Fire Weather Index in the ERA5 reanalysis, and a smaller but significant increase by at least 30 % in the models. The trend is mainly driven by the increase of temperature extremes and hence also likely underestimated. For the 2019/20 season more than half of the July–December drought was driven by record excursions of the Indian Ocean dipole and Southern Annular Mode. These factors are included in the analysis. The study reveals the complexity of the 2019/20 bushfire event, with some, but not all drivers showing an imprint of anthropogenic climate change.


2016 ◽  
Vol 16 (5) ◽  
pp. 1217-1237 ◽  
Author(s):  
Mark C. de Jong ◽  
Martin J. Wooster ◽  
Karl Kitchen ◽  
Cathy Manley ◽  
Rob Gazzard ◽  
...  

Abstract. Wildfires in the United Kingdom (UK) pose a threat to people, infrastructure and the natural environment. During periods of particularly fire-prone weather, wildfires can occur simultaneously across large areas, placing considerable stress upon the resources of fire and rescue services. Fire danger rating systems (FDRSs) attempt to anticipate periods of heightened fire risk, primarily for early-warning and preparedness purposes. The UK FDRS, termed the Met Office Fire Severity Index (MOFSI), is based on the Fire Weather Index (FWI) component of the Canadian Forest FWI System. The MOFSI currently provides daily operational mapping of landscape fire danger across England and Wales using a simple thresholding of the final FWI component of the Canadian FWI System. However, it is known that the system has scope for improvement. Here we explore a climatology of the six FWI System components across the UK (i.e. extending to Scotland and Northern Ireland), calculated from daily 2km × 2km gridded numerical weather prediction data and supplemented by long-term meteorological station observations. We used this climatology to develop a percentile-based calibration of the FWI System, optimised for UK conditions. We find this approach to be well justified, as the values of the "raw" uncalibrated FWI components corresponding to a very "extreme" (99th percentile) fire danger situation vary by more than an order of magnitude across the country. Therefore, a simple thresholding of the uncalibrated component values (as is currently applied in the MOFSI) may incur large errors of omission and commission with respect to the identification of periods of significantly elevated fire danger. We evaluate our approach to enhancing UK fire danger rating using records of wildfire occurrence and find that the Fine Fuel Moisture Code (FFMC), Initial Spread Index (ISI) and FWI components of the FWI System generally have the greatest predictive skill for landscape fire activity across Great Britain, with performance varying seasonally and by land cover type. At the height of the most recent severe wildfire period in the UK (2 May 2011), 50 % of all wildfires occurred in areas where the FWI component exceeded the 99th percentile. When all wildfire events during the 2010–2012 period are considered, the 75th, 90th and 99th percentiles of at least one FWI component were exceeded during 85, 61 and 18 % of all wildfires respectively. Overall, we demonstrate the significant advantages of using a percentile-based calibration approach for classifying UK fire danger, and believe that our findings provide useful insights for future development of the current operational MOFSI UK FDRS.


1985 ◽  
Vol 15 (6) ◽  
pp. 1194-1195
Author(s):  
Robert S. McAlpine ◽  
Thomas G. Eiber

Weather data from Upsala and Atikokan, Ontario, were used to determine the Canadian Forest Fire Weather Index System values and to calculate the soil moisture for two soil types using the Thornthwaite water balance. The Duff Moisture Code and the Drought Code were found to give excellent correlations with the total soil moisture content under most weather patterns.


2008 ◽  
Vol 17 (3) ◽  
pp. 328 ◽  
Author(s):  
A. Carvalho ◽  
M. D. Flannigan ◽  
K. Logan ◽  
A. I. Miranda ◽  
C. Borrego

The relationships among the weather, the Canadian Fire Weather Index (FWI) System components, the monthly area burned, and the number of fire occurrences from 1980 to 2004 were investigated in 11 Portuguese districts that represent respectively 66% and 61% of the total area burned and number of fires in Portugal. A statistical approach was used to estimate the monthly area burned and the monthly number of fires per district, using meteorological variables and FWI System components as predictors. The approach succeeded in explaining from 60.9 to 80.4% of the variance for area burned and between 47.9 and 77.0% of the variance for the number of fires; all regressions were highly significant (P < 0.0001). The monthly mean and the monthly maximum of daily maximum temperatures and the monthly mean and extremes (maximum and 90th percentile) of the daily FWI were selected for all districts, except for Bragança and Porto, in the forward stepwise regression for area burned. For all districts combined, the variance explained was 80.9 and 63.0% for area burned and number of fires, respectively. Our results point to highly significant relationships among forest fires in Portugal and the weather and the Canadian FWI System. The present analysis provides baseline information for predicting the area burned and number of fires under future climate scenarios and the subsequent impacts on air quality.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Daniele Cane ◽  
Nadia Ciccarelli ◽  
Renata Pelosini

Piedmont region is located in North-Western Italy and is surrounded by the alpine chain and by the Apennines. The region is covered by a wide extension of forests, mainly in its mountain areas (the forests cover 36% of the regional territory). In the period 1997–2007, Piedmont gained interest by an average of 378 wildfire events per year, covering an average of 1767 ha of forest per year. Meteorological conditions like long periods without precipitation contribute to create favourable conditions to forest fire development, while the fire propagation is made easier by the foehn winds, frequently interesting the region in winter and spring particularly. We applied the Fire Weather Index FWI (Van Wagner, 1987) to the Piedmont region on warning areas previously defined for fire management purposes (Cane et al., 2008). Here we present a new technique for the definition of thresholds in order to obtain alert levels more suited with the local conditions of the forest fire warning areas. We describe also the implementation of the prognostic FWI prediction system, involving the use of good forecasts of weather parameters at the station locations obtained by the Multimodel SuperEnsemble postprocessing technique.


Sign in / Sign up

Export Citation Format

Share Document