scholarly journals New insights into the phylogeny and relationships within the worldwide genus Riccardia (Aneuraceae, Marchantiophytina)

Author(s):  
Lucile Rabeau ◽  
S. Robbert Gradstein ◽  
Jean-Yves Dubuisson ◽  
Martin Nebel ◽  
Dietmar Quandt ◽  
...  

With 280 accepted species, the genus Riccardia S.F.Gray (Aneuraceae) is one of the most speciose genera of simple thalloid liverworts. The current classification of this genus is based on morphological and limited-sampling molecular studies. Very few molecular data are available and a comprehensive view of evolutionary relationships within the genus is still lacking. A phylogeny focusing on relationships within the large genus Riccardia has not been conducted. Here we propose the first worldwide molecular phylogeny of the genus Riccardia, based on Bayesian inference and parsimony ratchet analyses of sequences from three plastid regions (psbA-trnH, rps4, trnL-F). The results support the monophyly of Riccardia and a new monospecific genus, Afroriccardia Reeb & Gradst. gen. nov., is described based on molecular and morphological evidence. The results indicate that several currently recognized infrageneric divisions and a few species are not monophyletic, suggesting that further analyses are needed to arrive at a proper understanding of the phylogeny of the genus. Although evidence for an Andean clade was found, most of the species appear scattered in different clades without clear geographical segregation. Broader sampling and further analyses are necessary in order to improve our understanding of the phylogeny of this poorly known liverwort genus.

2021 ◽  
Vol 736 ◽  
pp. 137-182
Author(s):  
Daniel Burckhardt ◽  
David Ouvrard ◽  
Diana M. Percy

The classification of the superfamily Psylloidea is revised to incorporate findings from recent molecular studies, and to integrate a reassessment of monophyla primarily based on molecular data with morphological evidence and previous classifications. We incorporate a reinterpretation of relevant morphology in the light of the molecular findings and discuss conflicts with respect to different data sources and sampling strategies. Seven families are recognised of which four (Calophyidae, Carsidaridae, Mastigimatidae and Triozidae) are strongly supported, and three (Aphalaridae, Liviidae and Psyllidae) weakly or moderately supported. Although the revised classification is mostly similar to those recognised by recent authors, there are some notable differences, such as Diaphorina and Katacephala which are transferred from Liviidae to Psyllidae. Five new subfamilies and one new genus are described, and one secondary homonym is replaced by a new species name. A new or revised status is proposed for one family, four subfamilies, four tribes, seven subtribes and five genera. One tribe and eight genera / subgenera are synonymised, and 32 new and six revised species combinations are proposed. All recognised genera of Psylloidea (extant and fossil) are assigned to family level taxa, except for one which is considered a nomen dubium.


2022 ◽  
Author(s):  
Hejraneh Azizi ◽  
Masoud Sheidai ◽  
Valiollah Mozaffarian ◽  
Zahra Noormohammadi

Abstract Tragopogon L. (Cichorioideae, Lactuceae, Scorzonerinae) is an Old World genus with 150 species, Rechinger in Flora Iranica divided this genus in 13 section and 37 species that 26 species of them are exist in Iran. Safavi et al. divided it into 26 species without sections in flora Iran. Despite the anatomical and molecular studies done around the world, the exact classification of this genus is not clear due to the high number of secret species, hybridization, polyploidy and rapid diversification. The morphology studies of 32 species and Molecular studies (ISSR, ITS, cp DNA) of 22 species of the genus Tragopogon was investigated . The purpose of these studies are classification and determination of interspecific relationship in this genus. Sections of Rubriflori, Sosnowskya, Chromopappus, Majores, Angustissimi, Krascheninnikovia in flora of Iranica are confirmed on the basis of morphometry and molecular data. Section of Profundisulcati in flora Iranica is confirmed on the base of morphometry data. The Species of T. jesdianus, T . porphyrocephalus, T. rezaiyensis and T. Stroterocarpus in the flora of Iranica are not classified in any section which we classified in the Rubriflori section, Cp DNA dendrogram are not useful for classification in this genus and Chloroplast sequences are very similar among Tragopogon species, Therefore, the use of cp DNA markers in the classification of this genus is not recommended.


2020 ◽  
Vol 6 (1) ◽  
pp. 25-37 ◽  
Author(s):  
C. Beimforde ◽  
A.R. Schmidt ◽  
J. Rikkinen ◽  
J.K. Mitchell

Resinicolous fungi constitute a heterogeneous assemblage of fungi that live on fresh and solidified plant resins. The genus Sarea includes, according to current knowledge, two species, S. resinae and S. difformis. In contrast to other resinicolous discomycetes, which are placed in genera also including non-resinicolous species, Sarea species only ever fruit on resin. The taxonomic classification of Sarea has proven to be difficult and currently the genus, provisionally and based only on morphological features, has been assigned to the Trapeliales (Lecanoromycetes). In contrast, molecular studies have noted a possible affinity to the Leotiomycetes. Here we review the taxonomic placement of Sarea using sequence data from seven phylogenetically informative DNA regions including ribosomal (ITS, nucSSU, mtSSU, nucLSU) and protein-coding (rpb1, rpb2, mcm7) regions. We combined available and new sequence data with sequences from major Pezizomycotina classes, especially Lecanoromycetes and Leotiomycetes, and assembled three different taxon samplings in order to place the genus Sarea within the Pezizomycotina. Based on our data, none of the applied phylogenetic approaches (Bayesian Inference, Maximum Likelihood and Maximum Parsimony) supported the placement of Sarea in the Trapeliales or any other order in the Lecanoromycetes. A placement of Sarea within the Leotiomycetes is similarly unsupported. Based on our data, Sarea forms an isolated and highly supported phylogenetic lineage within the " Leotiomyceta". From the results of our multilocus phylogenetic analyses we propose here a new class, order, and family, Sareomycetes, Sareales and Sareaceae in the Ascomycota to accommodate the genus Sarea. The genetic variability within the newly proposed class suggests that it is a larger group that requires further infrageneric classification.


ZooKeys ◽  
2021 ◽  
Vol 1047 ◽  
pp. 155-198
Author(s):  
Fernando L. Mantelatto ◽  
Leonardo G. Pileggi ◽  
João A. F. Pantaleão ◽  
Célio Magalhães ◽  
José Luis Villalobos ◽  
...  

The freshwater shrimp genus Cryphiops Dana, 1852 has a disjunct distribution in North (Mexico) and South (Brazil, Chile) America, and is composed of only six species. The current classification of genera in the Palaemonidae is controversial, based on variable morphological characters, and still far from a clear definition. Cryphiops differs from the speciose genus Macrobrachium Spence Bate, 1868 only by the absence of the hepatic spines on the carapace. Previous studies with a limited dataset suggested the necessity to link morphology and phylogeny to create an internal rearrangement in the genus to resolve the paraphyletic status. Through a molecular phylogenetic approach, the evolutionary relationships are inferred based on four (mitochondrial and nuclear) genes, among all recognized species of Cryphiops and, in combination with a taxonomic revision, a rearrangement in the systematics of the genus is suggested. The absence of hepatic spines on the carapace, the only character used to separate the genus Cryphiops, is subjective and should be considered as a homoplasy. This implies that Cryphiops and Macrobrachium are subjective synonyms and, because the latter genus is much more diverse and widely known, with several economically important species, to avoid confusion and disturbance in nomenclatural stability and keep universality, a proposal for the priority of the older synonym (Cryphiops) to be partially suppressed in favor of maintaining the prevailing use of the younger synonym (Macrobrachium) is presented. As the species of Cryphiops should be accommodated in the genus Macrobrachium, new names to replace three preoccupied specific names that, by this action, resulted to be secondary homonyms are offered.


2019 ◽  
Vol 50 (5) ◽  
pp. 702-716 ◽  
Author(s):  
Veronica Pereyra ◽  
Adriano Cavalleri ◽  
Claudia Szumik ◽  
Christiane Weirauch

The New World family Heterothripidae (~90 spp., four genera) comprises flower-feeding and ectoparasitic thrips. The monophyly of the group has remained untested and species-level relationships were unknown. Morphological (123 characters) and molecular (28S rDNA D2 and D3-D5, H3, and partial COI) data were compiled to reconstruct phylogenetic relationships of this group. The ingroup was represented by 65 species of the four recognized Heterothripidae genera (Aulacothrips Hood, Heterothrips Hood, Lenkothrips De Santis & Sureda, and Scutothrips Stannard). The monophyly of Heterothripidae was recovered in the total evidence and molecular data only analyses with the ectoparasitic Aulacothrips placed as the sister group of the remaining Heterothripidae. The large genus Heterothrips (>80% of the species-level diversity), which was thoroughly sampled in our analyses (56 species), was recovered as paraphyletic with respect to Scutothrips and Lenkothrips. We conclude that additional morphological and molecular data would be desirable before revising the classification of Heterothripidae


Zootaxa ◽  
2007 ◽  
Vol 1668 (1) ◽  
pp. 395-411 ◽  
Author(s):  
LAURENCE A. MOUND ◽  
DAVID C. MORRIS

Two widely different classifications of the insect order Thysanoptera are discussed; an essentially phylogenetic system recognizing nine families in two suborders, and an essentially phenetic system recognizing 40 families in two orders. This paper emphasizes the distinction between “classification” and “systematics”, the former stressing the importance of differences, whereas the latter stresses the importance of derived similarities. A phylogenetic (i.e. systematic) classification incorporates predictions concerning evolutionary relationships that are important throughout biological studies, whether in host and parasite associations, biogeography, comparative physiology or development. The available phenetic classification of Thysanoptera serves no such broader purpose in biology. Recent molecular data derived from the gene 18S rDNA are analysed, but although some groups of taxa are well resolved, the deep relationships within the Thysanoptera remain unclear.


Phytotaxa ◽  
2019 ◽  
Vol 399 (3) ◽  
pp. 209 ◽  
Author(s):  
DMITRY V. LEONTYEV ◽  
MARTIN SCHNITTLER ◽  
STEVEN L. STEPHENSON ◽  
YURI K. NOVOZHILOV ◽  
OLEG N. SHCHEPIN

The traditional classification of the Myxomycetes (Myxogastrea) into five orders (Echinosteliales, Liceales, Trichiales, Stemonitidales and Physarales), used in all monographs published since 1945, does not properly reflect evolutionary relationships within the group. Reviewing all published phylogenies for myxomycete subgroups together with a 18S rDNA phylogeny of the entire group serving as an illustration, we suggest a revised hierarchical classification, in which taxa of higher ranks are formally named according to the International Code of Nomenclature for algae, fungi and plants. In addition, informal zoological names are provided. The exosporous genus Ceratiomyxa, together with some protosteloid amoebae, constitute the class Ceratiomyxomycetes. The class Myxomycetes is divided into a bright- and a dark-spored clade, now formally named as subclasses Lucisporomycetidae and Columellomycetidae, respectively. For bright-spored myxomycetes, four orders are proposed: Cribrariales (considered as a basal group), Reticulariales, a narrowly circumscribed Liceales and Trichiales. The dark-spored myxomycetes include five orders: Echinosteliales (considered as a basal group), Clastodermatales, Meridermatales, a more narrowly circumscribed Stemonitidales and Physarales (including as well most of the traditional Stemonitidales with durable peridia). Molecular data provide evidence that conspicuous morphological characters such as solitary versus compound fructifications or presence versus absence of a stalk are overestimated. Details of the capillitium and peridium, and especially how these structures are connected to each other, seem to reflect evolutionary relationships much better than many characters which have been used in the past.


2013 ◽  
Vol 27 (5) ◽  
pp. 502 ◽  
Author(s):  
Qi Kou ◽  
Xinzheng Li ◽  
Tin-Yam Chan ◽  
Ka Hou Chu ◽  
Zhibin Gan

Palaemonoidea is one of the most speciose superfamilies of Caridea. Since it was established, several classification schemes of Palaemonoidea have been proposed and modified. However, the current classification of Palaemonoidea is still in dispute. In this study, one mitochondrial gene (16S rRNA) and three nuclear genes (histone 3, 18S rRNA and 28S rRNA) were used to explore the phylogenetic relationships among the subgroups of the superfamily Palaemonoidea, including seven families with 25 affiliated genera. Based on the combined data with both maximum likelihood and Bayesian inference analyses, the results support the monophyly of Anchistioididae and Hymenoceridae. In contrast, Gnathophyllidae is suggested to be paraphyletic and Palaemonidae is shown to be a polyphyletic group. Our analyses reveal that the subfamily Palaemoninae could be approximately divided into three clades, and the branchiostegal groove is the probable morphological evidence of the environmental transition from sea to fresh water. Besides, for some of the Palaemonoidea families, their taxonomic status is obscure. A revision of Palaemonoidea and a re-evaluation of its constituent taxa appear to be necessary even though the systematic status of the subfamily Pontoniinae is still undetermined.


2021 ◽  
Author(s):  
R. T. S. Cordeiro ◽  
C. S. McFadden ◽  
J. A. Sanchez ◽  
C. D. Pérez

The current knowledge on the diversity of the genus Plexaurella is based on a series of dated revisions, often with no examination of types. Although being common octocorals in western Atlantic reefs, there is no consensus on an exact number of valid species. Furthermore, phylogenetic reconstructions do not support the current classification of Plexaurella within the family Plexauridae. Thus, this study reviews the genus based on examination of available types and assesses monophyly using mitochondrial (COI+igr, mtMutS) and nuclear (28S) markers, mostly from available molecular data. Until now, up to six species were considered valid. Our results show that the group is composed of at least seven previously described species: P. dichotoma, P. nutans, P. grisea, P. teres, P. grandiflora, P. regia and P. obesa; and one new species: Plexaurella rastrera sp. nov. An illustrated key to the valid species and a list of all available names are provided and the current classification of the genus is discussed. Based on congruent phylogenetic reconstructions and genetic distances, we propose the elevation of the former plexaurid subfamily Plexaurellinae to family level. Finally, based on examination of types, we propose the synonymy between Pseudoplexaura crucis and Plexaurella tenuis under Pseudoplexaura tenuis new comb.


Zootaxa ◽  
2018 ◽  
Vol 4474 (1) ◽  
pp. 1 ◽  
Author(s):  
HANS FERY ◽  
IGNACIO RIBERA

The subtribe Deronectina Galewski, 1994 (Dytiscidae, Hydroporinae, Hydroporini) is distributed in the Nearctic, in the north of the Neotropical region, and in the Palaearctic and Afrotropical regions. It is currently composed of 194 species and 13 subspecies in eight genera: Amurodytes Fery & Petrov, 2013, Boreonectes Angus, 2010, Deronectes Sharp, 1882, Nebrioporus Régimbart, 1906, Oreodytes Seidlitz, 1887, Scarodytes Gozis, 1914, Stictotarsus Zimmermann, 1919, and Trichonectes Guignot, 1941. We present a morphological and a molecular phylogeny of the species of the subtribe, and a revision of their taxonomy to accommodate our phylogenetic results. The morphological phylogeny is based on the study of 54 characters of the adults of 189 species and 2 subspecies, of which 114 species and the 2 subspecies were coded in the morphological matrix. For the molecular phylogeny we investigated 115 species and 11 subspecies, using a combination of fragments of four mitochondrial (COI, 16S rRNA, tRNA-Leu and NAD1) and two nuclear genes (18S rRNA and H3), analysed with maximum likelihood and Bayesian methods. For both datasets we included the type species of all genus-group taxa. The morphological, molecular and combined phylogenies mostly agree with the current classification of the group, but in some cases our results are in contradiction with established genera. Most remarkable are the polyphyly of Stictotarsus and Nebrioporus, the low support for the monophyly and internal phylogeny of Oreodytes, and the low support for the monophyly of Deronectina with molecular data. Thus, we introduce some taxonomic changes in the current classification to accommodate the generic concepts to our phylogenetic results. Nine new genera are established: Clarkhydrus n. gen. (type species Hydroporus roffii Clark, 1862), Hornectes n. gen. (type species Hydroporus quadrimaculatus Horn, 1883), Iberonectes n. gen. (type species Deronectes bertrandi Legros, 1956), Larsonectes n. gen. (type species Potamonectes minipi Larson, 1991), Leconectes n. gen. (type species Hydroporus striatellus LeConte, 1852), Mystonectes n. gen. (type species Deronectes neomexicanus Zimmerman & Smith, 1975), Nectoboreus n. gen. (type species Hydroporus aequinoctialis Clark, 1862), Nectomimus n. gen. (type species Oreodytes okulovi Lafer, 1988), and Zaitzevhydrus n. gen. (type species Hydroporus formaster Zaitzev, 1908). Three genera are reinstated as valid: Deuteronectes Guignot, 1945 (stat. rest.) (type species Hydroporus picturatus Horn, 1883), Nectoporus Guignot, 1950 (stat. rest.) (type species Hydroporus abbreviatus Fall, 1923), and Neonectes J. Balfour-Browne, 1940 (stat. rest.) (type species Hydroporus natrix Sharp, 1884). Thirty-six new combinations for species and subspecies thus far treated in the genera Boreonectes, Nebrioporus, Oreodytes and Stictotarsus result from the new classification: Clarkhydrus corvinus (Sharp, 1887) n. comb., C. decemsignatus (Clark, 1862) n. comb., C. deceptus (Fall, 1932) n. comb., C. eximius (Motschulsky, 1859) n. comb., C. falli (Nilsson, 2001) n. comb., C. interjectus (Sharp, 1882) n. comb., C. minax (Zimmerman, 1982) n. comb., C. opaculus (Sharp, 1882) n. comb., C. roffii (Clark, 1862) n. comb., C. spectabilis (Zimmerman, 1982) n. comb., Deuteronectes angustior (Hatch, 1928) n. comb., Hornectes quadrimaculatus (Horn, 1883) n. comb., Iberonectes bertrandi (Legros, 1956) n. comb., Larsonectes minipi (Larson, 1991) n. comb., Leconectes striatellus (LeConte, 1852) n. comb., Mystonectes coelamboides (Fall, 1923) n. comb., M. grammicus (Sharp, 1887) n. comb., M. neomexicanus (Zimmerman & Smith, 1975) n. comb., M. panaminti (Fall, 1923) n. comb., M. titulus (Leech, 1945) n. comb., Nectoboreus aequinoctialis (Clark, 1862) n. comb., N. dolerosus (Leech, 1945) n. comb., N. funereus (Crotch, 1873) n. comb., Nectomimus okulovi (Lafer, 1988) n. comb., Nectoporus angelinii (Fery, 2015) n. comb., N. congruus (LeConte, 1878) n. comb., N. crassulus (Fall, 1923) n. comb., N. obesus obesus (LeConte, 1866) n. comb., N. obesus cordillerensis (Larson, 1990) n. comb., N. rhyacophilus (Zimmerman, 1985) n. comb., N. sanmarkii sanmarkii (C.R. Sahlberg, 1826) n. comb., N. sanmarkii alienus (Sharp, 1873) n. comb., N. sierrae (Zimmerman, 1985) n. comb., N. subrotundus (Fall, 1923) n. comb., Zaitzevhydrus formaster formaster (Zaitzev, 1908) n. comb., and Z. formaster ulanulana (C.-K. Yang, 1996) n. comb. 


Sign in / Sign up

Export Citation Format

Share Document