Selection indices in the improvement of wheat grain yield on drought stress conditions

2012 ◽  
Vol 7 (7) ◽  
Author(s):  
Saman Chalabi Yani
Author(s):  
Dong Van Nguyen ◽  
Huong Mai Nguyen ◽  
Nga Thanh Le ◽  
Kien Huu Nguyen ◽  
Hoa Thi Nguyen ◽  
...  

2011 ◽  
Vol 3 (1) ◽  
pp. 114-123 ◽  
Author(s):  
Mina ABARSHAHR ◽  
Babak RABIEI ◽  
Habibollah SAMIZADEH LAHIGI

In order to compare different rice genotypes grown under drought stress conditions a field experiment was conducted. In this study thirty different genotypes of native, breeded and upland cultivars were evaluated. Analysis of variance showed significant differences among genotypes in respect of all vegetative and morphological traits. Genotypes were devided into three groups by cluster analysis based on all studied traits with minimum variance method (Wards Method). The total average indicates significant differences among groups in respect of all morphological and physiological characteristics. In addition, eight drought stress tolerance indices including: sensitivity to stress index (SSI), drought response index (DRI), relative drought index (RDI), tolerance index (TOL), mean productivity index (MP), stress tolerance index (STI), geometric mean productivity index (GMP) and harmonic mean index (HM) were calculated according to their grain yield under drought stress and normal conditions. In general, results of this experimnet revealed that, among rice cultivars Domsephid, Deylamany, Hasansaraei, Sadri, Anbarboo and Domsiah had the highest sensitivity referring to drought stress and produced the lowest grain yield. Also, genotypes of IR24 (breeded of IRRI), Nemat, Sephidroud, Kadoos and Bejar (breeded of Iran) and Vandana, upland cultivar (originally from India) had the highest tolerance to drought stress and produced the highest grain yield. In conclusion, it was suggested that, these cultivars are suitable for drought stress conditions and are appropriate for hybridization with the aim of increasing drought tolerance.


2018 ◽  
Vol 110 (3) ◽  
pp. 819-832 ◽  
Author(s):  
Cousin Musvosvi ◽  
Peter S. Setimela ◽  
Mruthunjaya C. Wali ◽  
Edmore Gasura ◽  
Basavangouda B. Channappagoudar ◽  
...  

2020 ◽  
Author(s):  
Soumya Kumar Sahoo ◽  
Goutam Kumar Dash ◽  
Arti Guhey ◽  
Mirza Jaynul Baig ◽  
Madhusmita Barik ◽  
...  

ABSTRACTRice production is severely threatened by drought stress in Eastern India. To develop drought tolerant varieties, selection of donors for breeding programme is crucial. Twenty one selected rice genotypes including both tolerant and sensitive to drought were grown under well-watered and drought stress conditions in dry seasons of two successive years of 2017 and 2018. Leaf water potential, relative water content displayed significant difference among the genotypes during vegetative screening. At reproductive stage drought screening, days to 50% flowering was delayed in all genotypes except N22 and Anjali (showed early flowering) however grain yield and other yield related traits decreased significantly compared to well watered condition. Correlation analysis of phenological and yield related traits with grain yield revealed that tiller numbers and panicle numbers are highly correlated with grain yield both under well-watered and water stress conditions and contributes maximum towards grain yield. The dendrogram grouped Mahamaya, Sahabhagidhan, Poornima, IBD 1, Hazaridhan, Samleshwari and Danteshwari into one cluster which performed better under water stress conditions and had grain yield more than 1.69 tha−1. Sahabhagidhan, Poornima, Vandana, and N22 displayed tolerance to drought both under vegetative and reproductive conditions which could be a good selection for the breeders to develop drought tolerant rice cultivars for eastern region of India.


2020 ◽  
Vol 7 ◽  
Author(s):  
Hasnae Choukri ◽  
Kamal Hejjaoui ◽  
Adil El-Baouchi ◽  
Noureddine El haddad ◽  
Abdelaziz Smouni ◽  
...  

Lentil (Lens culinaris Medikus) is a protein-rich cool-season food legume with an excellent source of protein, prebiotic carbohydrates, minerals, and vitamins. With climate change, heat, and drought stresses have become more frequent and intense in lentil growing areas with a strong influence on phenology, grain yield, and nutritional quality. This study aimed to assess the impact of heat and drought stresses on phenology, grain yield, and nutritional quality of lentil. For this purpose, 100 lentil genotypes from the global collection were evaluated under normal, heat, and combined heat-drought conditions. Analysis of variance revealed significant differences (p < 0.001) among lentil genotypes for phenological traits, yield components, and grain quality traits. Under no stress conditions, mineral concentrations among lentil genotypes varied from 48 to 109 mg kg−1 for iron (Fe) and from 31 to 65 mg kg−1 for zinc (Zn), while crude protein content ranged from 22.5 to 32.0%. Iron, zinc, and crude protein content were significantly reduced under stress conditions, and the effect of combined heat-drought stress was more severe than heat stress alone. A significant positive correlation was observed between iron and zinc concentrations under both no stress and stress conditions. Based on grain yield, crude protein, and iron and zinc concentrations, lentil genotypes were grouped into three clusters following the hierarchical cluster analysis. Promising lentil genotypes with high micronutrient contents, crude protein, and grain yield with the least effect of heat and drought stress were identified as the potential donors for biofortification in the lentil breeding program.


2019 ◽  
Vol 13 (02) ◽  
pp. 272-281 ◽  
Author(s):  
Armin Saed-Moucheshi ◽  
◽  
Hooman Razi ◽  
Ali Dadkhodaie ◽  
Masoud Ghodsi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document