scholarly journals Effect of Aloe vera gel coating on postharvest quality and shelf life of mango (Mangifera indica L.) fruits Var. Ngowe

2015 ◽  
Vol 7 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Sophia Ochiki ◽  
Morwani Robert Gesimba ◽  
Joseph Ngwela Wolukau
Foods ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 653 ◽  
Author(s):  
Manjula D. Ghoora ◽  
Nagarajan Srividya

Microgreens are highly respiring produce characterized by a relatively short shelf-life. In this study, the efficacy of two types of macro-perforated packaging, PET clamshell (PET–CS) and LDPE self-seal bag (LDPE–SSB), was assessed on the postharvest quality and shelf life of radish (RaS) and roselle (HbS) microgreens stored at 5 °C. Pre-harvest spray treatment (AGSC) was compared with postharvest dip coating (AGDC) using Aloe vera gel (AG) for the first time in microgreens for postharvest quality improvement. PET–CS had a lower physiological loss in weight (PLW), respiration rate (RR), electrolyte leakage (EL), microbial counts (MCs), and higher overall acceptability (OA) than LDPE–SSB. AG-coated microgreens had significantly (p ≤ 0.05) lesser deteriorative postharvest changes and higher ascorbic acid content than uncoated control. AGSC maintained better OA and postharvest quality than AGDC, especially at the end of the study period in terms of reducing EL, retaining greenness (−a*), and chroma value in HbS microgreens. In RaS microgreens, AGSC helped to maintain lower PLW, MC, and higher ascorbic acid levels. AGSC could be suggested as an eco-friendly ergonomic pre-harvest treatment along with PET–CS for enhancement of postharvest quality and shelf life in RaS and HbS microgreens, with a tremendous potential to be extended to other microgreens.


Author(s):  
Md. Nazmul Hasan Mehedi ◽  
Avijit Halder ◽  
Md. Fakhrul Hasan ◽  
Nowrin Islam Toma ◽  
Md. Abdur Rouf ◽  
...  

The demand for healthy and ready-to-eat products has been growing steadily over the years. However, these products are very susceptible to spoilage and have a short shelf-life. In this research, edible coatings based on edible starch (aloe vera gel) and NaHCO3 were applied on fresh-cut vegetable samples (carrot and potato), and the changes in their bio-chemical properties and microbial changes were monitored during 6 days of storage at 4ºC. Two factor experiments, Factor A; postharvest treatments (different concentration of aloe gel and NaHCO3) and Factor B; two vegetable species (Carrot and Potato) were laid out in a Completely Randomized Design (CRD) with three replications. Different concentration of aloe vera gel and NaHCO3 solutions were prepared as per treatment. The prepared slices of vegetable species were treated with different treatment combinations and stored in 200 g capacity polyethylene bags sealed under air, vacuum or modified active atmosphere and then bio-chemically (Titratable Acidity (TA), Ascorbic Acid (AA) content, Total Soluble Solids (TSS), Reducing Sugar (RS), Non-reducing Sugar (NRS), pH) and microbiologically assessed. Higher rate of edible starch (30%) + NaHCO3 (2%) treated potato (CT12) showed the superior performance on TA (1.290), TSS (5.200% Brix), NRS content (0.340) and pH (4.773% Brix) compare to control and other interaction treatments of the study at 6 days after storage while  untreated potato (T0) showed statistically lower AA (6.575 mg/25 g) TA (0.464) TSS (3.856), pH (3.827) NRS (0.133). Growth of bacterial colonies on NA media had statistically highest (14.00) in untreated potato and lowest (5.00) in T12 treated potato while fungal colonies on PDA media range of 4.00 to 11 at 6 DAS. The study may help small-scale establishments to increase the shelf-life of minimally processed vegetables.


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 764
Author(s):  
Nishant Kumar ◽  
Pratibha ◽  
Neeraj ◽  
Anka Trajkovska Petkoska ◽  
Sawsan Ali AL-Hilifi ◽  
...  

The polysaccharide based composite biomaterial (coating) used in preserving fruits and vegetables during storage is attracting increased attention as it is biodegradable material that prolongs shelf life. In the present investigation, chitosan–pullulan (50:50) composite edible coating was prepared with pomegranate peel extract (0.02 g/mL) as an active antioxidant agent. The effect of treatment with pomegranate peel extract enriched chitosan–pullulan composite edible coating on the shelf life of mango fruits during 18 days of storage period at room (23 °C) and cold (4 °C) temperature was evaluated. Results of the present study demonstrated that the application of chitosan–pullulan composite edible coating significantly (p ≤  0.05) influences the storage life of mango fruits at both storage temperatures. The chitosan–pullulan composite edible coating reduced the physiological loss in weight (PLW), and maintained total soluble solids (TSS), acidity and pH of coated mango fruits as compared to the control. In addition, fruit sensory quality such as freshness, color, taste and texture were also retained by the treatment. Furthermore, sustained firmness, phenolic content and antioxidant activity confirmed the effectiveness of the pomegranate peel extract enriched chitosan–pullulan composite edible coating on mango fruits. The phenolic, flavonoid and antioxidant activity of coated fruits were retained by pomegranate peel rich edible coating. Therefore, the chitosan–pullulan (50:50) combination with pomegranate peel extract can be used as an alternative preservation method to prolong the shelf life of mango fruits at room and cold storage conditions. However, more in-depth studies are required at farm and transit level without affecting the postharvest quality of mango fruits, providing more revenue for farmers and minimizing postharvest losses.


2014 ◽  
Vol 166 ◽  
pp. 1-8 ◽  
Author(s):  
Cong Han ◽  
Jinhua Zuo ◽  
Qing Wang ◽  
Lijing Xu ◽  
Baiqiang Zhai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document