In vivo anti-oxidant and anti-inflammatory activities of cambial meristematic cells established from Ginkgo biloba L.

2012 ◽  
Vol 6 (15) ◽  
Author(s):  
Sun-Hee Jang
2020 ◽  
Author(s):  
Laura Casares ◽  
Juan Diego Unciti ◽  
Maria Eugenia Prados ◽  
Diego Caprioglio ◽  
Maureen Higgins ◽  
...  

ABSTRACTOxidative stress and inflammation in the brain are two key hallmarks of neurodegenerative diseases (NDs) such as Alzheimer’s, Parkinson’s, Huntington’s and multiple sclerosis. The axis NRF2-BACH1 has anti-inflammatory and anti-oxidant properties that could be exploited pharmacologically to obtain neuroprotective effects. Activation of NRF2 or inhibition of BACH1 are, individually, promising therapeutic approaches for NDs. Compounds with dual activity as NRF2 activators and BACH1 inhibitors, could therefore potentially provide a more robust antioxidant and anti-inflammatory effects, with an overall better neuroprotective outcome. The phytocannabinoid cannabidiol (CBD) inhibits BACH1 but lacks significant NRF2 activating properties. Based on this scaffold, we have developed a novel CBD derivative that is highly effective at both inhibiting BACH1 and activating NRF2. This new CBD derivative provides neuroprotection in cell models of relevance to Huntington’s disease, setting the basis for further developments in vivo.


2020 ◽  
Author(s):  
Zheng Wang ◽  
Ping Zhang ◽  
Qingqing Wang ◽  
Xueping Sheng ◽  
Jianbing Zhang ◽  
...  

Abstract Background: Liver ischemia-reperfusion (I/R) injury is an inevitable pathological phenomenon in various clinical conditions, such as liver transplantation, resection surgery, or shock, which is the major cause of morbidity and mortality after operation. Ginkgo Biloba Dropping Pill (GBDP) is a unique Chinese Ginkgo Biloba leaf extract preparation that exhibits a variety of beneficial biological activities. The aim of this study is to investigate the protective effects of GBDP on the liver I/R injury both in vitro and in vivo. Methods: Hypoxia/reoxygenation (H/R) experiments were performed in AML-12 cells and primary hepatocytes, which were pretreated with GBDP (60 or 120 μg/mL) followed by incubation in a hypoxia chamber. Cell viability and cell apoptosis were detected by MTT assay and annexin V staining respectively. C57BL/6 mice were used to establish liver I/R injury model, and were pretreated with GBDP (100 or 200 mg/kg/day, i.g.) for two weeks. Liver damage was detected by plasma levels of alanine transaminase (ALT) and aspartate transaminase (AST). Liver necrosis and neutrophil infiltration were determined by H&E and myeloperoxidase immunohistochemistry staining. Finally, TUNEL staining and western blot analysis of apoptosis-related proteins were used to investigate the anti-apoptotic effect of GBDP. Results: In the in vitro study, GBDP pretreatment improved the cell viability of AML-12 cells in H/R injury model. Similarly, the same result was found in the primary hepatocytes isolated from C57BL/6 mice. Moreover, GBDP decreased the number of apoptotic cells induced by H/R. In the in vivo study, oral administration of GBDP ameliorated liver injury evidenced by a significant decline in the levels of ALT and AST. Furthermore, the result of H&E staining showed that GBDP reduced the size of necrosis area. In addition, the decreased infiltration of neutrophils indicated that GBDP may play an anti-inflammatory effect. More importantly, GBDP reduced TUNEL-positive cells and the expression of Bax and caspase-3 in liver indicating GBDP has anti-apoptotic effects.Conclusion: Our findings elucidated that GBDP has potential effects for protecting against liver I/R injury characterized by its anti-apoptotic, anti-necrotic, and anti-inflammatory properties, which would promisingly make a contribution to the exploration of therapeutic strategies in the liver I/R injury.


2020 ◽  
Vol 21 (8) ◽  
pp. 3026 ◽  
Author(s):  
Alessia Filippone ◽  
Marika Lanza ◽  
Michela Campolo ◽  
Giovanna Casili ◽  
Irene Paterniti ◽  
...  

The major end-products of dietary fiber fermentation by gut microbiota are the short-chain fatty acids (SCFAs) acetate, propionate, and butyrate, which have been shown to modulate host metabolism via effects on metabolic pathways at different tissue sites. Several studies showed the inhibitory effects of sodium propionate (SP) on nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. We carried out an in vitro model of inflammation on the J774-A1 cell line, by stimulation with lipopolysaccharide (LPS) and H2O2, followed by the pre-treatment with SP at 0.1, 1 mM and 10 mM. To evaluate the effect on acute inflammation and superoxide anion-induced pain, we performed a model of carrageenan (CAR)-induced rat paw inflammation and intraplantar injection of KO2 where rats received SP orally (10, 30, and 100 mg/kg). SP decreased in concentration-dependent-manner the expression of cicloxigenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) following LPS stimulation. SP was able to enhance anti-oxidant enzyme production such as manganese superoxide dismutase (MnSOD) and heme oxygenase-1 (HO-1) following H2O2 stimulation. In in vivo models, SP (30 and 100 mg/kg) reduced paw inflammation and tissue damage after CAR and KO2 injection. Our results demonstrated the anti-inflammatory and anti-oxidant properties of SP; therefore, we propose that SP may be an effective strategy for the treatment of inflammatory diseases.


2015 ◽  
Vol 2 (10) ◽  
Author(s):  
Shofiul Azam ◽  
Prawej Ansari ◽  
Mohammad Mamun Ur Rashid ◽  
Mohammad Nazmul Alam ◽  
Ismail Hussein Ahmed ◽  
...  

2020 ◽  
Vol 10 (2) ◽  
pp. 65
Author(s):  
Mbiantcha Marius ◽  
Ateufack Gilbert ◽  
TsafackEric Gonzal ◽  
DjuichouNguemnang Stephanie Flore ◽  
AtsamoAlbert Donatien ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document