scholarly journals Biochemical analysis and toxicity studies of some heavy metals and their correlation with different diseases

2018 ◽  
Vol 10 (3) ◽  
pp. 15-19
Author(s):  
Jahangir Muhammad ◽  
Muhammad Faizan Haider Hafiz ◽  
Niaz Zafar ◽  
Abaidullal Sajid ◽  
Ilyas Minhas Dawood
2016 ◽  
Vol 30 (1-2) ◽  
pp. 17-22 ◽  
Author(s):  
Tahmina Shammi ◽  
Sangita Ahmed

Pollution of the environment with toxic heavy metals is spreading throughout the world along with industrial progress. Removal of these toxic heavy metals by using bacteria has achieved growing attention in recent years. The present study focuses on isolation of lead and chromium tolerant Bacillus spp., from the Buriganga and the Shitalkhya, the two major rivers surrounding Dhaka. A total of 25 Bacillus spp. isolates tolerant to 50 ppm lead and chromium were preliminarily identified based on morphological and biochemical analysis. Further investigation revealed that all isolates were also able to grow at 1000 ppm lead and 400 ppm chromium, while tolerance to 1500 ppm lead and 500 ppm chromium was observed among 48% and 76% isolates, respectively. All isolates were also able to grow at 50 ppm copper and 50 ppm zinc, while 72% grew at 100 ppm copper. The heavy metal tolerant Bacillus spp were also multi drug resistant and showed resistance to Tetracycline (100%), Ceftazidime (100%), Ceftriaxone (100%), Ampicillin (28%) and Nalidixic acid (24%).Bangladesh J Microbiol, Volume 30, Number 1-2,June-Dec 2013, pp 17-22


2022 ◽  
Vol 82 ◽  
Author(s):  
W. Mohammad ◽  
T. Mohammed ◽  
K. A. El-Wakeil ◽  
M. M. Hassan

Abstract The influence of pharmaceutical residues and heavy metals on living organisms has received global attention. The present study assessed the interactive effect of antibiotic residues and heavy metals in soil, as contaminated food with cadmium (Cd) and oxytetracycline (OTC) on the isopod Porcellio leavis. It was fed on fresh plant leaves contaminated with different concentrations of cadmium, Cd+OTC1000 ppm, Cd+OTC2000 ppm and Cd+OTC3000 ppm for 4 weeks. The changes in the feeding patterns, protein, lipid peroxidation (LPO), catalase activity (CAT), and total free amino acids (TFAA) were recorded. There were significant differences in the obtained results where Cd reduced the egestion ratio (ER) however, OTC enhanced this ratio. Biochemical analysis illustrated that combination between OTC and Cd inhibits the toxic effects of Cd at low concentration (1000 ppm), while at high concentration (3000 ppm) raise the toxicity. Detailed studies are required for further understanding of the interaction between OTC and heavy metals, and also its impact on soil animals and for improving soil risk evaluation.


2016 ◽  
Vol 10 (1) ◽  
pp. 113-123
Author(s):  
Neni Gusmanizar ◽  
Mohd Izuan Effendi Halmi ◽  
Rusnam Mansur ◽  
Mohd Fadhil Abd Rahman ◽  
Mohd Shukri Shukor ◽  
...  

Heavy metals and organic xenobiotics including dyes are important industrial components with their usage amounting to the millions of tonnes yearly. Their presence in the environment is a serious pollution issue globally. Bioremediation of these pollutants using microbes with multiple detoxification capacity is constantly being sought. In this work we screen the ability of a molybdenum-reducing bacterium isolated from contaminated soil to decolorize various azo and triphenyl methane dyes. The bacterium reduces molybdate to molybdenum blue (Mo-blue) optimally at pH 6.0, and temperatures of between 25 and 40oC. Glucose was the best electron donor for supporting molybdate reduction followed by sucrose, trehalose, maltose, d-sorbitol, d-mannitol, d-mannose, myo-inositol, glycerol and salicin in descending order. Other requirements include a phosphate concentration of between 5.0 and 7.5 mM and a molybdate concentration between 10 and 20 mM. The absorption spectrum of the Mo-blue produced was similar to previous Mo-reducing bacterium, and closely resembles a reduced phosphomolybdate. Molybdenum reduction was inhibited by copper, silver and mercury at 2 ppm by 43.8%, 42.3% and 41.7%, respectively. We screen for the ability of the bacterium to decolorize various dyes. The bacterium was able to decolorize the dye Congo Red. Biochemical analysis resulted in a tentative identification of the bacterium as Serratia marcescens strain Neni-1. The ability of this bacterium to detoxify molybdenum and decolorize azo dye makes this bacterium an important tool for bioremediation.


2016 ◽  
Vol 15 (2) ◽  
pp. 166-181 ◽  
Author(s):  
M.F. Rahman ◽  
M. Rusnam ◽  
N. Gusmanizar ◽  
N.A. Masdor ◽  
C.H. Lee ◽  
...  

AbstractToxicants removal through microorganism’s action is intensely being sought due to economic reasons. The aim of this paper is to isolate a bacterium that is able to reduce molybdenum blue and at the same time can grow on the detergent Sodium Dodecyl Sulfate (SDS). Biochemical analysis resulted in a tentative identification of the bacterium as Enterobacter sp. strain Neni-13. Growth on SDS showed a 100 % removal at 800 mg/L SDS within 12 days. The removal of SDS from media was confirmed through Methylene Blue Active Substances Assay. Molybdenum reduction using sodium molybdate as a substrate was characterized using a microplate assay. The optimum pH and temperature for molybdenum reduction was between 6.0 and 6.5, and at 37 °C, respectively. Glucose was the best electron donor for molybdate reduction. Phosphate and molybdate concentrations of between 2.5 and 5.0 mM and at 15 mM, were optimal for molybdate reduction, respectively. Molybdate reduction was inhibited by the heavy metals mercury, silver, copper and chromium at 2 ppm. The ability of this bacterium to detoxify molybdate and degrade the SDS makes this bacterium an important tool for bioremediation of toxicants in soil.


2016 ◽  
Vol 10 (1) ◽  
pp. 113-123
Author(s):  
Neni Gusmanizar ◽  
Mohd Izuan Effendi Halmi ◽  
Rusnam Mansur ◽  
Mohd Fadhil Abd Rahman ◽  
Mohd Shukri Shukor ◽  
...  

Heavy metals and organic xenobiotics including dyes are important industrial components with their usage amounting to the millions of tonnes yearly. Their presence in the environment is a serious pollution issue globally. Bioremediation of these pollutants using microbes with multiple detoxification capacity is constantly being sought. In this work we screen the ability of a molybdenum-reducing bacterium isolated from contaminated soil to decolorize various azo and triphenyl methane dyes. The bacterium reduces molybdate to molybdenum blue (Mo-blue) optimally at pH 6.0, and temperatures of between 25 and 40oC. Glucose was the best electron donor for supporting molybdate reduction followed by sucrose, trehalose, maltose, d-sorbitol, d-mannitol, d-mannose, myo-inositol, glycerol and salicin in descending order. Other requirements include a phosphate concentration of between 5.0 and 7.5 mM and a molybdate concentration between 10 and 20 mM. The absorption spectrum of the Mo-blue produced was similar to previous Mo-reducing bacterium, and closely resembles a reduced phosphomolybdate. Molybdenum reduction was inhibited by copper, silver and mercury at 2 ppm by 43.8%, 42.3% and 41.7%, respectively. We screen for the ability of the bacterium to decolorize various dyes. The bacterium was able to decolorize the dye Congo Red. Biochemical analysis resulted in a tentative identification of the bacterium as Serratia marcescens strain Neni-1. The ability of this bacterium to detoxify molybdenum and decolorize azo dye makes this bacterium an important tool for bioremediation.


Author(s):  
George Hug ◽  
William K. Schubert

A white boy six months of age was hospitalized with respiratory distress and congestive heart failure. Control of the heart failure was achieved but marked cardiomegaly, moderate hepatomegaly, and minimal muscular weakness persisted.At birth a chest x-ray had been taken because of rapid breathing and jaundice and showed the heart to be of normal size. Clinical studies included: EKG which showed biventricular hypertrophy, needle liver biopsy which showed toxic hepatitis, and cardiac catheterization which showed no obstruction to left ventricular outflow. Liver and muscle biopsies revealed no biochemical or histological evidence of type II glycogexiosis (Pompe's disease). At thoracotomy, 14 milligrams of left ventricular muscle were removed. Total phosphorylase activity in the biopsy specimen was normal by biochemical analysis as was the degree of phosphorylase activation. By light microscopy, vacuoles and fine granules were seen in practically all myocardial fibers. The fibers were not hypertrophic. The endocardium was not thickened excluding endocardial fibroelastosis. Based on these findings, the diagnosis of idiopathic non-obstructive cardiomyopathy was made.


Author(s):  
J.E. Michaels ◽  
S.A. Garfield ◽  
J.T. Hung ◽  
S.S. Smith ◽  
R.R. Cardell

3H-galactose (gal) and 3H-glucose (glu) were compared to determine which compound was preferable for pulse labeling newly formed hepatic glycogen. Control fed rats were used to achieve substantial and consistent levels of hepatic glycogen and to stimulate glycogen synthesis.Rats fed once daily for 4 hr achieved hepatic glycogen levels > 3% wet weight liver prior to injection by tail vein of a tracer dose of 3H-gal or 3H-glu. The rats were sacrificed 15-120 min later and liver was prepared by routine techniques for light (LM) and electron microscopic (EM) radioautography (RAG) and biochemical analysis.


Author(s):  
Randall W. Smith ◽  
John Dash

The structure of the air-water interface forms a boundary layer that involves biological ,chemical geological and physical processes in its formation. Freshwater and sea surface microlayers form at the air-water interface and include a diverse assemblage of organic matter, detritus, microorganisms, plankton and heavy metals. The sampling of microlayers and the examination of components is presently a significant area of study because of the input of anthropogenic materials and their accumulation at the air-water interface. The neustonic organisms present in this environment may be sensitive to the toxic components of these inputs. Hardy reports that over 20 different methods have been developed for sampling of microlayers, primarily for bulk chemical analysis. We report here the examination of microlayer films for the documentation of structure and composition.Baier and Gucinski reported the use of Langmuir-Blogett films obtained on germanium prisms for infrared spectroscopic analysis (IR-ATR) of components. The sampling of microlayers has been done by collecting fi1ms on glass plates and teflon drums, We found that microlayers could be collected on 11 mm glass cover slips by pulling a Langmuir-Blogett film from a surface microlayer. Comparative collections were made on methylcel1ulose filter pads. The films could be air-dried or preserved in Lugol's Iodine Several slicks or surface films were sampled in September, 1987 in Chesapeake Bay, Maryland and in August, 1988 in Sequim Bay, Washington, For glass coverslips the films were air-dried, mounted on SEM pegs, ringed with colloidal silver, and sputter coated with Au-Pd, The Langmuir-Blogett film technique maintained the structure of the microlayer intact for examination, SEM observation and EDS analysis were then used to determine organisms and relative concentrations of heavy metals, using a Link AN 10000 EDS system with an ISI SS40 SEM unit. Typical heavy microlayer films are shown in Figure 3.


Sign in / Sign up

Export Citation Format

Share Document