scholarly journals Heavy Metal Tolerance and Antibiotic Resistance of Bacillus spp. Isolated from Two Major Rivers in Bangladesh

2016 ◽  
Vol 30 (1-2) ◽  
pp. 17-22 ◽  
Author(s):  
Tahmina Shammi ◽  
Sangita Ahmed

Pollution of the environment with toxic heavy metals is spreading throughout the world along with industrial progress. Removal of these toxic heavy metals by using bacteria has achieved growing attention in recent years. The present study focuses on isolation of lead and chromium tolerant Bacillus spp., from the Buriganga and the Shitalkhya, the two major rivers surrounding Dhaka. A total of 25 Bacillus spp. isolates tolerant to 50 ppm lead and chromium were preliminarily identified based on morphological and biochemical analysis. Further investigation revealed that all isolates were also able to grow at 1000 ppm lead and 400 ppm chromium, while tolerance to 1500 ppm lead and 500 ppm chromium was observed among 48% and 76% isolates, respectively. All isolates were also able to grow at 50 ppm copper and 50 ppm zinc, while 72% grew at 100 ppm copper. The heavy metal tolerant Bacillus spp were also multi drug resistant and showed resistance to Tetracycline (100%), Ceftazidime (100%), Ceftriaxone (100%), Ampicillin (28%) and Nalidixic acid (24%).Bangladesh J Microbiol, Volume 30, Number 1-2,June-Dec 2013, pp 17-22

Author(s):  
Muibat Fashola

Introduction: Indiscriminate dumping of spent oils enriched with heavy metals has led to increase in heavy metals load in the soil. Heavy metals exert toxic effects on biodegradation of organic pollutant in cocontaminated soil and there is need to find suitable strategies for their removal. Aim: The aim of this study was to assess the heavy metals resistance capability of indigenous Bacillus species in hydrocarbon polluted soil to nickel (Ni), Cadmium (Cd), Lead (Pb) and Chromium (Cr). Materials and Methods: Heavy metal tolerant bacteria were isolated from hydrocarbon polluted soil using Luria-Berthani agar supplemented with the respective metals and spread plate techniques. The isolates were putatively identified on the basis of their colonial morphology and biochemical characteristics and their antibiotics susceptibility pattern were evaluated using disc diffusion method. Results: The maximum tolerable concentration (MTC) of the four heavy metals to the selected isolates was 2 mM. Four bacteria isolates able to withstand the MTC were putatively identified as Bacillus subtilis, Bacillus megaterium, Bacillus laterosporus and Bacillus polymyxa. Out of the four Bacillus species, only B. laterosporus did not show multiple tolerance to the tested antibiotics which show that there is correlation between heavy metal tolerance and antibiotics resistance by the isolates. Conclusion: Multiple heavy metal tolerance Bacillus spp. were isolated from crude oil polluted soil. These bacteria could be suitable agents for bioaugmentation of hydrocarbon polluted soil co-contaminated with heavy metals.


2013 ◽  
Vol 7 (2) ◽  
pp. 130-136 ◽  
Author(s):  
Tewari Suman ◽  
W Ramteke Pramod ◽  
Tripathi Manikant ◽  
Kumar Shailendra ◽  
Kumar Garg Satyendra

2009 ◽  
Vol 3 (2) ◽  
pp. 48-64
Author(s):  
Kadhim M. Ibrahim ◽  
Shaimaa A. Yousir

Several experiments were carried out to study heavy metal tolerance in tissue cultures or whole plants of S. grandiflora., Callus was induced and maintained on modified Murashige and Skoog, 1962 medium (MS) supplemented with (0.5)mg/l benzyl adenine and (2)mg/l 2,4-phenoxy acetic acid . Heavy metals (Cd, Co, Cu, Cr or Zn) were added to the culture medium at different concentrations as contamination agents. In order to asses the effect of these heavy metals on seed germination; seeds were sown in soil contaminated with different concentrations of heavy metals for 3 weeks. Atomic Absorption Spectrophotometer was used for analysis of samples taken from whole plants and callus cultures. Results showed that callus fresh weight decreased with increasing heavy metal concentration in cultural medium. Germination percentages and plant heights increased over time. However, a reduction occurred in these parameters with increasing heavy metal levels. Percentages of metals accumulated in calli were (0.001, 0.011, 0.012 and 0.013%) at (0.0, 0.05, 0.075 and 0.1)mg/l Cd respectively; (0.001, 0.008, 0.016 and 0.006%) at (0.0, 0.1, 0.25 and 0.5)mg/l Co respectively; (0.001, 0.020, 0.034 and 0.015%) at (0.0, 0.075, 0.2 and 0.5)mg/l Cu respectively; (0.001, 0.013, 0.012 and 0.010%) at (0.0, 0.25, 0.4 and 0.5)mg/l Cr respectively and (0.027, 0.051, 0.059 and 0.056%) at (0.0 , 0.75, 1.0 and 1.5)mg/l Zn respectively. Percentages of metals accumulated in whole plants were (0.08, 0.55, 1.11, 0.83 and 0.44%) at (0.0, 1.0, 2.0, 3.0 and 4.0)mg/Kg soil Cd respectively; (0.11, 0.22, 0.55, 0.47 and 0.44%) at (0.0, 15.0, 30.0 45.0 and 60.0)mg/Kg soil Co respectively; (0.01, 0.10, 0.57, 0.58 and 0.72%) at (0.0, 25.0, 50.0, 75.0 and 100.0)mg/Kg soil Cu respectively. (0.08, 0.80, 1.28, 1.31 and 0.88%) at (0.0, 25.0, 50.0, 75.0 and 100.0)mg/Kg soil Cr respectively and (0.06, 1.11, 1.20, 1.83 and 2.22%) at (0.0, 100.0, 200.0, 300.0 and 400.0)mg/Kg soil Zn respectively.


Biologia ◽  
2012 ◽  
Vol 67 (5) ◽  
Author(s):  
Kamala Gupta ◽  
Chitrita Chatterjee ◽  
Bhaskar Gupta

AbstractThe present study was conducted to determine the culturable bacterial profile from Kestopur canal (Kolkata, India) and analyze their heavy metal tolerance. In addition to daily sewage including solid and soluble wastes, a considerable load of toxic metals are released into this water body from industries, tanneries and agriculture, household as well as health sectors. Screening out microbes from such an environment was done keeping in mind their multifunctional application especially for bioremediation. Heavy metals are major environmental pollutants when present in high concentration in soil and show potential toxic effects on growth and development in plants and animals. Some edible herbs growing in the canal vicinity, and consumed by people, were found to harbour these heavy metals at sub-toxic levels. The bioconcentration factor of these plants being <1 indicates that they probably only absorb but not accumulate heavy metals. All the thirteen Grampositive bacteria isolated from these plants rhizosphere were found to tolerate high concentration of heavy metals like Co, Ni, Pb, Cr, Fe. Phylogenetic analysis of their 16S rDNA genes revealed that they belonged to one main taxonomic group — the Firmicutes. Seven of them were found to be novel with 92–95% sequence homology with known bacterial strains. Further microbiological analyses show that the alkaliphilic Bacillus weihenstephanensis strain IA1 and Exiguobacterium aestuarii strain CE1, with selective antibiotic sensitivity along with high Ni2+ and Cr6+ removal capabilities, respectively, can be prospective candidates for bioremediation.


Heavy metals are the most important pollutants that are non-biodegradable and increasingly accumulate in the environment. Phytoremediation can be defined as the use of plants for the extraction, immobilization, containment, or degradation of contaminants. It provides an ecologically, environmentally sound and safe method for restoration and remediation of contaminated land. Plant species vary in their capacity of hyper-accumulation of heavy metals. The chapter reviews the current findings on the molecular mechanism involved in heavy metals tolerance, which is a valuable tool for phytoremediation. The heavy metal tolerance genes help in the hyper-accumulation trait of a plant. Heavy metal transporter ATPases (HMAs) genes help in the refluxing of heavy metal ions from the cytosol, either into the apoplast, the vacuole, or other organelles, which help in the hyperaccumulation of metal. Understanding the signaling mechanism of transporter genes will be an important tool to understand the genetics of hyperaccumulation.


Plants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 896 ◽  
Author(s):  
Shafaqat Ali ◽  
Zohaib Abbas ◽  
Mahmoud F. Seleiman ◽  
Muhammad Rizwan ◽  
İlkay YAVAŞ ◽  
...  

Unexpected biomagnifications and bioaccumulation of heavy metals (HMs) in the surrounding environment has become a predicament for all living organisms together with plants. Excessive release of HMs from industrial discharge and other anthropogenic activities has threatened sustainable agricultural practices and limited the overall profitable yield of different plants species. Heavy metals at toxic levels interact with cellular molecules, leading towards the unnecessary generation of reactive oxygen species (ROS), restricting productivity and growth of the plants. The application of various osmoprotectants is a renowned approach to mitigate the harmful effects of HMs on plants. In this review, the effective role of glycine betaine (GB) in alleviation of HM stress is summarized. Glycine betaine is very important osmoregulator, and its level varies considerably among different plants. Application of GB on plants under HMs stress successfully improves growth, photosynthesis, antioxidant enzymes activities, nutrients uptake, and minimizes excessive heavy metal uptake and oxidative stress. Moreover, GB activates the adjustment of glutathione reductase (GR), ascorbic acid (AsA) and glutathione (GSH) contents in plants under HM stress. Excessive accumulation of GB through the utilization of a genetic engineering approach can successfully enhance tolerance against stress, which is considered an important feature that needs to be investigated in depth.


2018 ◽  
Vol 34 (1) ◽  
pp. 43-46 ◽  
Author(s):  
Sangita Ahmed ◽  
Md Rafiqul Islam ◽  
Jannatul Ferdousi ◽  
Tabassum Samia Iqbal

Pollution of the environment and food with toxic heavy metals is being intensified in Bangladesh with industrial development. Consumption of foods and water contaminated with heavy metals imposes threat to human health. Aiming to find a solution to this problem, the present study focuses on probiotic Lactobacillus spp. with potential to remove heavy metals from environment as well as human body. A total of three Lactobacillus spp were isolated from curd samples and were identified based on their morphological and biochemical properties. These isolates were tolerant to low pH and bile salt which aids in their application in human gut. All isolates could tolerate 600 ppm chromium, 400 ppm lead, 400 ppm copper and 400 ppm zinc. The heavy metal tolerant Lactobacillus spp were also multi drug resistant and showed 100% resistance to Azithromycin, Cloxacillin, Gentamicin, Vancomycin, Streptomycin, Nalidixic acid, Trimethoprim-Sulfamethoxazole and Penicillin, while 100% sensitivity was observed to Imipenem. Bangladesh J Microbiol, Volume 34 Number 1 June 2017, pp 43-46


2015 ◽  
Vol 1130 ◽  
pp. 263-267 ◽  
Author(s):  
Hee Chan Jang ◽  
Marjorie Valix

In this study, the adaptation of A. thiooxidans to heavy metals leached from saprolitic Ni laterite ores was performed by gradual acclimatisation. The bacteria was cultivated in heavy metals (Ni, Co, Fe, Mg, Cr and Mn) with total concentrations of 2400 to 24000 ppm equivalent to total dissolution of 1 to 10% (w/v) pulp densities of the saprolitic Ni laterite ore. Adaptation evolution mapped from its tolerance index was found to be dependent on metal concentration, acid generation, and period of adaptation. Bio-stimulation of cell growth and acid production was promoted by heavy metal stress on the bacteria. Pre-established heavy metal tolerance of the bacteria improved the leaching rate in its early phase; 20% and 7% increase in Ni and Co metal recoveries were observed in using adapted bacteria. However heavy metal tolerance was also achieved by the bacteria during the leaching process, albeit delayed by a lag phase. These results confirm the robust nature and suitability of A. thiooxidans in direct biomining of Ni ores.


2019 ◽  
Vol Volume 12 ◽  
pp. 1029-1033 ◽  
Author(s):  
Renata Galetti ◽  
Rafael Antonio Casarin Penha Filho ◽  
Joseane Cristina Ferreira ◽  
Alessandro M. Varani ◽  
Ana Lúcia Costa Darini

2013 ◽  
Vol 6 (1) ◽  
pp. 125-131 ◽  
Author(s):  
S. Silambarasan ◽  
J. Abraham

Metal pollution is a growing problem and microbes have adapted to tolerate the presence of metals and even use them. The investigation was carried out to screen for bisorption property of metals by bacteria and check for correlation between tolerance to heavy metals and antibiotic resistance. Soil samples were collected from Palar River basin site of Vellore and five distinct bacteria were isolated. Antibiotic resistance (bacitracin, chloramphenicol, streptomycin, rifampicin, penicillin and ampicillin) was checked and tolerance to heavy metals was screened (Cd, Pb, Cu and Zn). It was found that most of the bacterial isolates had multiple antibiotic resistances which might be due to the stress caused by heavy metals released into the Palar river basin, Vellore. The multiple antibiotics resistance of this bacterial species was found to be associated with tolerance to metals. Biosorption studies revealed that Alcaligenes faecalis could tolerate 59% Cd, 61% Pb, 40% Cu, 39% Zn and Staphylococcus aureus removed 60% Cd, 63% Pb, 42% Cu, 41% Zn and Streptococcus lactis absorbed 61% Cd, 57% Pb, 37% Cu, 38% Zn and Micrococcus luteus reduced 56% Cd, 61% Pb, 39% Cu, 41% Zn and Enterobacter aerogenes removed 60% Cd, 55% Pb, 62% Cu, 67% Zn. Keywords: Antibiotic resistant; Heavy metal tolerance; Biosorption; Metal polluted soils. © 2014 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. doi: http://dx.doi.org/10.3329/jsr.v6i1.14678 J. Sci. Res. 6 (1), 125-131 (2014)      


Sign in / Sign up

Export Citation Format

Share Document